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Abstract. The quantization of classical theories that admit more than one Hamiltonian
description is considered. This is done from a geometrical viewpoint, both at the quantization
level (geometric quantization) and at the level of the dynamics of the quantum theory. A spin-1

2
system is taken as an example in which all the steps can be completed. It is shown that the
geometry of the quantum theory imposes restrictions on the physically allowed non-standard
quantum theories.

1. Introduction

The problem of quantization of a classical theory is at least 70 yr old, but the term
‘quantization’ always has had a somewhat loose meaning. There is no such thing asthe
quantization prescription that takes a classical theory and produces the ‘correct’ quantum
theory.

There are three main approaches to canonical quantization: algebraic [1], geometric [2],
and group theoretic quantization [3]. They differ, roughly speaking, in the basic structures
on phase space that they regard as fundamental in order to construct a quantum theory. In
each of these approaches one is led to make several choices along the way that might yield
inequivalent quantum theories. Well known examples of these ambiguities are the factor
ordering problem and different representations of the CCR in QFT, for example.

The quantization schemes mentioned above have, however, a common feature. They
assume that the classical system to be quantized is unique, that is, that there is a preferred
classical description for the system. On the other hand, from the classical viewpoint,
there might be more than one perfectly valid way of representing a given system. These
alternative descriptions are callednon-standardHamiltonian systems. The aim of this paper
is to explore the possibility of quantization starting from different classical theories.

The programme of quantization of a non-standard Hamiltonian dynamics has its roots
in work of Feynman reported by Dyson [4] and its extension by Hojman and Shepley [5].
Feynman’s original work showed that Poisson-bracket relations place strong constraints
on the types of forces allowed in physical systems. Hojman and Shepley generalized
Feynman’s work and were able to show that a consistent quantization with a set of
commuting coordinates led to a second-order Lagrangian in those coordinates. Hojman
then constructed a consistent Poisson-bracket Hamiltonian theory for first-order equations
of motion of the formẋi = f i(xj ) [6]. We will discuss this formalism in more detail below.
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This programme could be seen as yet another ambiguity in the quantization process or,
if viewed from a different perspective, as a new avenue for finding possibly valid quantum
theories. This would be the case, for instance, if the given system has more than one
classical description without anya priori criteria for choosing the ‘correct’ one.

We will proceed as follows. In the introduction we will recall the basic steps of
geometric quantization, pointing out the choices one makes in the process and discussing
the possible implications in the final quantum theory. Section 2 reviews the possibility
of different classical descriptions or ‘non-standard Hamiltonian systems’. We consider
as an example the classical spin-1

2 particle. Section 3 recalls the geometry of quantum
mechanics as proposed by Ashtekar and Schilling [16], focusing on the spin-1

2 particle.
We have chosen this simple system because it shows the connection between the classical
and quantum system very clearly, even though this simplicity means that the system is so
constrained that there is very little freedom to allow consistant quantization of non-standard
Hamiltonian systems. The basic programme is discussed in section 4 for the spinning
particle. The obstructions to quantizing the non-standard description are isolated. Section 5
discusses the results and suggests some directions for further research. Throughout the
paper, the ‘abstract index notation’ is employed. For a discussion on the notation see [7].

1.1. Geometric quantization

By quantization we mean the process of finding a quantum theory from some known classical
theory. The starting point for all canonical quantization schemes is a classical system
described in terms of simplectic geometry. Let us recall the basic notions in order to set
the notation [8, 9].

The phase spaceof the system consists of a manifold0 of dimension dim(0) = 2n
(real). Physical states are represented by the points on the manifold.Observablesare
smooth functions on0. There is a non-degenerate, closed two-form� defined on it. That
is, the form�ab satisfies∇[c�ab] = 0, and if�abV b = 0 thenV b = 0. Therefore, an
inverse�ab exists which defines an isomorphism between the cotangent and the tangent
space at each point of0. The existence of thesimplectic two-form� endows(0,�) with
a simplectic structure.

A vector fieldV a generates infinitesimal canonical transformations if its Lie drags the
simplectic form, i.e.

LV� = 0. (1.1)

This condition is equivalent to saying that locally it is of the form:V b = �ba∇af := Xbf
and it is called theHamiltonian vector field off (w.r.t.�). Note that the simplectic structure
gives us a mapping between functions on0 and Hamiltonian vector fields. Thus, functions
on phase space (i.e. observables) are generators of infinitesimal canonical transformations.

The Lie algebra of vector fields induces a Lie algebra structure on the space of functions.

{f, g} := �abXagXbf = �ab∇af∇bg (1.2)

such thatXa{f,g} = −[Xf ,Xg]a.
Since the simplectic form is closed, it can be obtained locally from asimplectic potential,

ωa,

�ab = 2∇[aωb] . (1.3)

Time evolution is given by a vector field,f a, whose integral curves are the dynamical
trajectories of the system. On phase space there is apreferred function, theHamiltonian,
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H , whose Hamiltonian vector field corresponds directly tof a, i.e.

f a = �ab∇bH . (1.4)

Adopting the viewpoint that all observables generate canonical transformations we see that
the motion generated by the Hamiltonian corresponds to ‘time evolution’. The ‘change’ in
time of the observables will be simply given by the Poisson bracket of the observable with
H (ġ = f a∇ag = �ab∇ag∇bH = {g,H }).

So far, not very much has been assumed about the phase space0. It can be any (even-
dimensional) manifold with complicated topology, compact, open, etc. The simplectic
structure� and the functionH are assumed to be givena priori. Note that they might not
be unique. From the classical viewpoint the only ‘observable’ entities are the dynamical
trajectoriesf a of the system (the equations of motion). They could have come from more
than one pair(�,H)†.

However, if the system has a configuration spaceC, then the phase space is automatically
‘chosen’ to be the cotangent bundle of the configuration spaceT ∗C. There is also a preferred
one-form onT ∗C which can be taken to be the simplectic potential which determines
uniquely the simplectic structure (the Liouville form). Therefore, the fact that a configuration
space exists picks out for us the phase space and the simplectic two-form.

The programme of quantization can be divided into two parts: kinematical and
dynamical. The kinematical part deals with the problem of defining a good prescription
for going ‘from Poisson brackets to commutators’ in a consistent way. That is, it should
start with the classical system and produce a Hilbert space of states. The dynamical part
deals with the Hamiltonian, i.e. the generator of dynamical evolution.

We will concentrate on geometric quantization whose starting point is a simplectic
manifold (0,�). There is noa priori assumption about the structure of the phase space0.
It can be completely general. In particular it can include the case in which0 is compact,
i.e. it is not a cotangent bundle.

There are two steps in geometric quantization. The first one involves defining a Hilbert
space on the full phase space. Wavefunctions are, roughly speaking, functions on0. Any
observable can be ‘quantized’. The second step involves introducing an additional structure
on 0, a polarization that will select those wavefunctions that depend only on ‘half of the
coordinates’. Physical observables are those that respect, in a way to be defined below, the
polarization.

We start with a Hamiltonian system as defined above. We define what are called
prequantum wavefunctions. They are cross sections,9, of a complex line bundle over0.
The correspondingU(1) connection is the simplectic potentialωa whose curvature is the
simplectic two form�ab. For each trivializationωa a function9ω corresponds. If we
changeω by a gauge transformationωa → ωa +∇ag then

9ω′ = eig/h̄9ω. (1.5)

There is a Hermitian inner product in this complex vector space given by the Liouville
measure on0. The pre-Hilbert space would be the completion with respect to this inner
product.

Any observablef (f : 0 → R) has a corresponding symmetric operator,Of , defined
by:

Of9 = h̄
i
Xaf∇a9 + f9 := h̄

i
Xaf

(
∂a − i

h̄
ωa

)
9 + f9. (1.6)

† There is another, even more drastic, possibility. There could be anotherf ′a that could have the same integral
curves asf a . Such systems are calledS-equivalent [10]. We will not consider them here.
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Note that we are now extending the definition of∇ to ‘act’ on sections9 of the complex
line bundle. These operators are: (i) linear; (ii) gauge-covariant, (iii) symmetric (formally
self-adjoint).

The assignmentf → Of is one-to-one and preserves the natural Lie algebra structure,

[Of ,Og] = −ih̄O{f,g} (1.7)

that is, one can assign a consistent operator to all observables.
It is known that ‘actual’ quantum wavefunctions depend only on ‘half’ of the variables.

We have to ‘split’0 into two parts. This is done by choosing apolarization, P . At each
point, γ , it assigns a maximal subspace,P |γ , of the complexified tangent space such that:

(i) V a andWa ∈ P |γ then [V,W ]a ∈ P |γ for all γ ;
(ii) for all V a,Wa ∈ P then�abV aWb = 0 for all γ .
If P is real we have a ‘real polarization’. The first condition implies that through each

point of 0 there passes ann-dimensional submanifold, which is tangent to the subspace
P |γ . The phase space is then foliated byn-dimensional submanifolds. The second condition
implies that the Poisson bracket of any two coordinates of this submanifold vanishes.

Given a polarization, aquantum wavefunctionis a cross section,9, satisfying

V a∇a9 = 0 (1.8)

for all V a ∈ P . This is called thepolarization condition.
This condition tells us that the wavefunction depends only onn coordinatesqi ‘in

involution’. (For instance, if we have a configuration space,C, with coordinatesqi , the
standard polarization is the ‘vertical polarization’ spanned by{ ∂

∂pi
}. We then have that

{qi, qj } = 0.)
Classical observables whose pre-quantum operators become well-defined operators are

good observables. The condition is,

[Of , V
a∇a]9 = 0 (1.9)

for all V a ∈ P . This can be written classically as [Xf , V ]a ∈ P for all V a (LV Xf ∈ P ).
We say then thatXaf preserves the polarization,P . In particular, the operators corresponding
to the coordinatesqi preserve the vertical polarization and are therefore good observables.

A special kind of complex polarization is called Kähler. An almost complex structure
is a tensor fieldJab such thatJabJbc = −δac, and it is a canonical transformation:
Ja
bJc

d�bd = �ac. Then,

gab := �acJ cb (1.10)

is symmetric, non-degenerate, positive definite metric. The triplet(�, J, g) equips0 with an
almost K̈ahler structure. We can construct on the phase space a Hermitian (complex) inner
product whose real part is given byg and the imaginary part by�, i.e.(, ) = 1

2g(, )− i
2�(, ).

The tensor field,J , has eigenvectors in the complexified tangent space. Let us
decompose any (complexified)V a into two parts,

V a± := 1
2(V

a ∓ iJ abV b) (1.11)

whereV a+ is an eigenvector ofJ with eigenvaluei. Let us choose the vector space spanned
by those eigenvectors. It is ann-dimensional (complex) vector space, and�abV a+V

b
+ = 0. If

the distribution is integrable (the manifold can be given as complex charts), the polarization
is called K̈ahler.

In this case the polarization condition, on the section of the Hermitian line bundle,
involves consideringholomorphic sections. When the phase space0 is compact it is
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necessary to have holomorphic sections. This is relevant, for instance, for the quantization
of spin systems.

Note that prequantization is a purely kinematical step. It produces a (non-physical)
Hilbert space on0 and every observable is prequantizable. There is no external input
(other than the original(�,H) pair).

The choice of polarization, on the other hand, has both kinematical and dynamical
content. It is kinematical because it singles out the physically relevant quantum states from
the prequantum Hilbert space and defines what the physically admissible observables are,
namely those that preserve the polarization. This choice also has dynamical implications
since the Hamiltonian mightnot be compatible withP . It is the choice of polarization that
might lead to inequivalent quantum theories.

2. Non-standard classical theory

As we mentioned in the introduction, we are interested in considering systems that might
have a non-standard classical description. By this we mean systems that admit more than
one Hamiltonian formulation or systems that obey certain equations of motion that donot
come from a variational principle.

This section has two parts. In the first we review the non-standard Hamiltonian systems
mentioned above, considering a generalization of the simplectic formalism, namely that of
Poisson structures on a manifold. The second part takes a spinning classical particle as a
particular example of a system that admits non-standard descriptions.

2.1. Poisson structures and non-standard dynamics

In the introduction we gave an overview of the standard Hamiltonian dynamics in terms of
a simplectic structure�ab. It is possible to define dynamics by introducing a more general
structure known as aPoisson (bracket) structure[8, 9]. It consists of a bivector5ab = 5[ab]

on 0 satisfying the Jacobi identity:

5c[d∇c5ab] = 0. (2.1)

It defines naturally a ‘generalized’ Poisson bracket between functions on0.

{f, g}5 := 5ab∇bf∇ag. (2.2)

It also defines a mapping from functions to vector fields
π

Xaf := 5ab∇bf. (2.3)

Note that5ab might be degenerate, in which case there will beCasimir functions. For
instance, if∇aC is a degenerate ‘direction’ of5ab (5ab∇bC = 0), then{f,C}5 ≡ 0, ∀f .
That is,C ‘commutes’ with all functions on0.

In the case of a non-degenerate simplectic structure, its inverse,�ab, defines (locally) an
‘almost’ one-to-one mapping between functions and Hamiltonian vector field, that is, two
functions will define the same vector field if they differ by, at most, a constant function.
On the other hand, for a degenerate Poisson structure, given a Casimir functionC, then two
functionsf andg will define the same vector fieldXaf = 5ab∇bf if f = g + h(C) where
h(C) is any (differentiable) function ofC.

Given a phase space0, the dynamical evolution of a system is given by the integral
curves of a vector fieldV a. The vector field gives at each point of0 a set of equations
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of motion for the system. If we choose some local coordinatesxµ, µ = 1, . . .2n, then the
rate of change of each coordinatexµ is given by the Lie derivative ofxµ alongV a,

ẋµ := LV xi = V a∇a(xµ) = V µ(x). (2.4)

Recall that in thexµ coordinate system,V a = V µ(x)( ∂
∂xµ
)a.

A natural question is whether the given system of first-order differential equations can
be put in a Hamiltonian form. That is, does there exist a Poisson structure5ab and a
function h such thatV a = 5ab∇bh? If the set of equations came from a (second-order)
variational principle, then the Poisson structure is the inverse of the (naturally defined)
simplectic structure�(0)ab on 0 = T ∗C and the Hamiltonian,h, is the Legendre transform
of the Lagrangian (for non-singular systems).

There might be, however,more than onePoisson structure that makes the equations
Hamiltonian, with another Hamiltonian. Those systems are known asbi-Hamiltonian [11].

In the case when the set of equations does not come from a variational principle, there
is in principle no natural way of putting them in Hamiltonian form. A programme for doing
this has recently been proposed by Hojman [6]. The underlying idea is that one should
use the symmetries of the equations of motion in order to construct a Poisson structure.
Let us summarize the Hojman construction for systems withN = 2n constants of motion
Ci , (N − 1) of which do not depend explicitly on time. That is, one knows them as
explicit functions of the coordinates (a fairly strong requirement, equivalent to knowing
the full classical solution). The preceding requirement is sufficient to be able to reduce
the equations to Hamiltonian form. It is, of course, not necessary for constructing the
Hamiltonian theory.

This5ab may be constructed by summing elements of the form

5ab = µ(x)εabλ1...λN−2∇λ1C1 . . .∇λN−2CN−2 (2.5)

where εabλ1...λN−2 is the N -index Levi-Civita symbol, andµ(x) is a function of the
coordinates to be explained below. This5ab satisfies the Jacobi identity. TheC1, . . . , CN−2

are time-independent constants of motion. The Hamiltonian is defined byH = CN−1, along
with CN = t+dN , wheredN is time independent. This can always be achieved by a change
of coordinates. Hojman has another construction that uses a symmetry of the equations of
motion, without needing to know some constants of motion in the explicit form. For more
details see [6].

Suppose that for a given set of equations that come from a Lagrangian, we have been
able to construct a non-degenerate5 by means of the Hojman procedure. Let us denote by
�′ab the corresponding two-form(�′ab5

bc = δca). If the Poisson structure5 is compatible
with �ab†, then there will be a tensor fieldKa

b such that

�′ab = Kc
a�cb. (2.6)

Note that since� is invertible, we then haveKd
a = �′ab�bd . We will call this mapping a

Hojman transformation.

2.2. Classical description of a spin-1
2 particle

As we mentioned in the introduction, the example we would like to use to describe the
change of Poisson structures in quantum mechanics is the simplest quantum system, that of
a spin-12 particle. In order to investigate the relationship between the classical and quantum
theories we would like to study the classical problem equivalent to that of a quantum spin-1

2

† Two Poisson structures are said to becompatibleif their sum is also a Poisson structure [11].
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particle. The main difficulty with this idea is that, strictly speaking, there is no classical
limit to this problem. There are a number of ‘classical’ limits that have been proposed [12],
but we will use a limit in terms of Grassman variables. We would like to find a limit of the
quantum theory based on the three spin operatorsŜi = h̄σi , theσi the Pauli matrices with
Hamiltonian Ĥ = AŜ3, A = constant. Notice that̂S2

i = h̄2, and [Ŝi , Ŝj ] = h̄εijkŜk, and
{Ŝi , Ŝj }+ = 0, i 6= j . As h̄→ 0, we getŜ2

i = 0, [Ŝi , Ŝj ] = 0 and{Ŝi , Ŝj }+ = 0, and there is
no set of classical numbers that can obey these relations. If we write the classical variables
as Si = εsi(t), where thesi are commuting functions oft and ε is a constant Grassman
number, thenS2

i = 0 (ε2 = 0), [Si, Sj ] = 0= {Si, Sj }+.
Assume we have a Hamiltonian,H , in principle a function of some coordinatesqi ,

i = 1, 2, 3, and Si = βikpk, where thepi are the momenta conjugate to theqi , and
βij = βij (q) (the angular velocities areωi = αij (q)q̇j , whereαijβjk = δik), then

Ṡj + γjk` ∂H
∂Sk

S` = 0 (2.7)

if H does not depend explicitly on theqi , i.e. H = H(Si). For a rigid bodyγjk` =
α`m(

∂βmk
∂qn
βnj − ∂βmj

∂qn
βnk) = −εjk`. If we takeH = AS3 then

Ṡi = εi3kASk (2.8)

or,

εṡi = εi3kAεsk (2.9)

and

ṡi = εi3kAsk. (2.10)

These imply thats3 = constant= K1 and

ṡ1 = −As2 (2.11)

ṡ2 = As1 (2.12)

so s2
1+ s2

2 = constant. These mean thats2
1+ s2

2+ s2
3 = S2 = constant which implies that the

classical-state space is a two-sphere. The system’s orbits lie on the two-sphere of radiusS
and sinces3 is a constant they are parallels of ‘latitude’. If we look at the equations forsi ,
ṡ3 = 0 and (2.11), (2.12), they can be written as

ṡi = 5ij

∂H

∂sj
(2.13)

with H = As3 and5ij = εijksk.
This is precisely an example of a very well studied system with a Poisson structure.

Systems that have rotational degrees of freedom (a rigid body for example), have a common
description coming from the fact that the rotation groupSO(3) acts on the system, as we
now recall [8, 9]. The phase space is given by a three-dimensional vector space (that we
can identify withR3) with coordinatessi (it is the dual of the Lie algebraSO(3)). The
Poisson structure is given by

5ij = Ckij sk (2.14)

whereCkij = δknεnij are the structure constants ofSO(3). It is clearly degenerate (any
asymmetric tensor field in an odd-dimensional space is). Note, however, that5ij induces
a non-degenerate simplectic structure on each sphere of radiusS. R3 is then foliated by
leavesof simplectic manifolds. Furthermore, the ‘natural’ Casimir function isK0 = 1

2δ
ij sisj
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which is clearly constant on each sphere. All Hamiltonian vector fields generated by5 are
tangent to the spheres and therefore leave the Casimir unchanged.

Note that5 can be written as

5ij = εnij ∂K0

∂sn
(2.15)

which is precisely of the form of (2.5).
A remark is in order. With our formalism we could recover the Euler equations for

a rigid body if we choose the Hamiltonian to be the kinetic energyT = I ij sisj , where
I ij is the inverse of the inertia tensor. The Hamiltonian we have chosen for our system,
H = As3, is therefore not the ‘kinetic’ energy of a rigid body, but resembles more that of a
‘point-like’ object that might interact with an external potential (a constant magnetic field,
for example).

The idea now, in order to find different descriptions for the system, is to use the
Hojman prescription for different constants of motion. We have the functionsK1 = s3 and
K2 = s2

1 + s2
2. Following Hojman [13] we can now takeC = C(K1,K2), any arbitrary

function of (K1,K2), and a new ‘Hamiltonian’H = H(K1,K2), also any function ofK1

andK2, and define

5̃ij = µ(s`)εijk ∂C
∂sk

. (2.16)

We would then like to have the equations of motion forsi as

ṡi = 5̃ij

∂H

∂sj
. (2.17)

We can have the same equations as before if we chooseµ properly andC andH satisfy
one condition. If we look at thes3 equation we have

ṡ3 = µ
[
∂C

∂K1

∂K1

∂s2
+ ∂C

∂K2

∂K2

∂s2

] [
∂H

∂K1

∂K1

∂s1
+ ∂H

∂K2

∂K2

∂s1

]
−µ

[
∂C

∂K1

∂K1

∂s1
+ ∂C

∂K2

∂K2

∂s1

] [
∂H

∂K1

∂K1

∂s2
+ ∂H

∂K2

∂K2

∂s2

]
(2.18)

and sinceK1 does not depend ons1 or s2,

ṡ3 = −2µs1s2

[
∂C

∂K2

∂H

∂K2
− ∂C

∂K2

∂H

∂K2

]
= 0. (2.19)

For s1

ṡ1 = µ
[
∂C

∂K1

∂K1

∂s3
+ ∂C

∂K2

∂K2

∂s3

] [
∂H

∂K1

∂K1

∂s2
+ ∂H

∂K2

∂K2

∂s2

]
−µ

[
∂C

∂K1

∂K1

∂s2
+ ∂C

∂K2

∂K2

∂s2

] [
∂H

∂K1

∂K1

∂s3
+ ∂H

∂K2

∂K2

∂s3

]
= 2µs2

[
∂C

∂K1

∂H

∂K2
− ∂C

∂K2

∂H

∂K1

]
. (2.20)

We can achievės1 = −As2 if 1 ≡ ∂C
∂K1

∂H
∂K2
− ∂C

∂K2

∂H
∂K1
6= 0 and we takeµ = − A

21 . It is easy
to show that his choice ofµ also givesṡ2 = As1, so we recover the original equations of
motion.

As an example of this procedure, take the normal HamiltonianH = As3 andC = s2
1+s2

2.
If we look at the planes1 = 0, the orbits intersect the circles2

3 + s2
2 = 1. The lines of

constants3 = H/A andC are perpendicular straight lines that form a coordinate grid over
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the half plane given by thes2s3-plane withs2 > 0. The spheres2
1 + s2

2 + s2
3 = S2 intersects

this half plane in a semicircle, and any point on this semicircle represents the initial point of
a possible orbit, and if we rotate the semicircle around thes3-axis then a point on it traces
out a parallel of ‘latitude’. In the rectangular grid ofC andH/A we can always specify
this point by particular values ofC andH/A.

Now, the equation forsi is

dsi
dt
= µ(s`)εijk ∂C

∂sk

∂H

∂sj
. (2.21)

Note that this has the form

ds

dt
= µ(s)(∇H)× (∇C) (2.22)

where∇C and∇H are the two-dimensional gradients ofC and H which are the the
normals to the coordinate curves. We have∇H ×∇C = |∇H ×∇C|e1, wheree1 is the
unit vector in thes1 direction. Since in thes1 = 0 plane

ds1
dt
= −As2 (2.23)

we see that (2.22) gives this if we takeµ = −As2/|∇H ×∇C|. From [13] we see that
this µ works for all s1, s2.

As long as they form a complete coordinate grid in thes2s3-plane, any functionsC and
H can be used in the formulation. Note that if∇H is parallel to∇C at any point (or
the norm of one of the vectors is zero),µ blows up. This is the condition in [13] for the
non-existence ofµ. Notice also thatH is no longer the energy.

Let us now try to understand what we are doing from a geometrical viewpoint. The fact
that we are using a preferred function (the Casimir) to define the Poisson structure means
that one-formswa ‘transverse’ to theC = constant surfaces are precisely the degenerate
directions of5. Hamiltonian vector fields are always tangent to the surfaces and therefore
the motion they generate lies within them. In the standard case of the rigid body, for
example, the surfaces on which the Casimir is constant are spheres precisely because they
are the orbits of the rotation group (coadjoint action on the dual of the Lie algebra) on
R3. The simplectic structure induced on the spheres from the Poisson structure onR3 is
precisely (1/S times) the area element (recall that any non-degenerate two-form on a surface
is proportional, by means of a conformal factor, to the area element).

Suppose that we now define a new Poisson structure via a function whose surfaces of
constant value are not spheres but some ‘ellipsoids’ (with rotational symmetry around the
s3-axis). Now, the surfaces will not be the orbits of the rotation group in three dimensions
(see [13] for a particular choice in which the resulting deformed algebra isSU(2)q). The
change in the induced simplectic structure, the ‘Hojman transformation’, will be a simple
conformal transformation. We can conclude then that by a rescaling of the simplectic
structure and a corresponding change in the Hamiltonian, we have an infinite number of
classical descriptions for the system.

As we mentioned above, we would now like to apply the idea of changing the simplectic
structure to quantum mechanics. In the next section we will discuss this formulation and
its extension to ‘K̈ahler quantum mechanics’ in the context of the spin-1

2 example outlined
above. We will see that two obstructions to doing this in the most simple-minded way
exist. These are both related to the fact that we need to define a probability structure on
the quantum-mechanical phase space. Probability structures are often given in terms of
linear operators on a Hilbert space. We will see that both the definition of probabilities in
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‘K ähler quantum mechanics’ and the realization of dynamical quantities as linear operators
place constraints on the possible simplectic structures that are allowed. Since the system is
basically two-dimensional, we will see that these constraints are so strong that there is no
way to change the simplectic structure without changing the quantum physics of the system.
Whether this is a feature of higher-dimensional systems is an open question.

3. Quantum mechanics

The problem we want to address in this paper is the possible quantization of systems that
admit non-standard descriptions. If the system admits more that one classical description,
we are led to ask whether the quantum theories are equivalent. If not, what are the criteria
to choose the ‘correct’ classical description?

As we mentioned in the introduction, there are, roughly speaking, two different sets of
issues concerning quantum mechanics that one has to address: kinematical and dynamical.
The kinematical conditions, so to speak, that the constructed quantum theory should satisfy,
are mainly related to the Heisenberg uncertainty relations. Commuting quantum observables
can, in principle, be simultaneously measured. Such quantum observables correspond to
classical observables that have vanishing Poisson brackets among them. Therefore, there is
in principle a way of distinguishing between, for instance, two different Poisson structures.
If the Poisson structure in the classical theory is degenerate, there will be Casimir functions
and, therefore, corresponding quantum Casimir operators. This will lead to ‘super-selected’
sectors that should be detected experimentally.

There is another set of issues that one has to consider when analysing the dynamical
content of the theory. Quantum mechanics is a theory of measurement. If the theory is
to pass the test of ‘validity’, it should provide probabilities for measuring eigenvalues of
various operators as functions in time, that should be compatible with measurements. This
is a condition to be satisfied by the dynamical evolution of the quantum system. This
condition is analogous to the corresponding classical condition that the dynamical evolution
should be the integral curves of a preferred vector field. This ‘dynamical condition’ has a
very clean geometrical formulation when quantum mechanics is cast in geometric language.

3.1. Geometry of quantum mechanics

Quantum mechanics, with all its postulates, can be put into geometric language. In this
section we will recall the geometry of quantum mechanics. For details see [14–18].

The description we will give is for systems with a finite-dimensional Hilbert space but
the generalization to the infinite-dimensional case is straightforward [17]. Denote byP the
space of rays in the Hilbert spaceH. In this caseP will be the complex projective space
CPn, sinceH can be identified withCn.

It is convenient to viewH as areal vector space equipped with a complex structure
(recall that a complex structureJ is a linear mappingJ : H→ H such thatJ 2 = −1). Let
us decompose the Hermitian inner product into real and imaginary parts,

〈9|8〉 = G(9,8)− i�(9,8) (3.1)

whereG is a Riemannian inner product onH and� is a simplectic form.
Let us restrict our attention to the sphere,S, of normalized states. The true space of

states is given by the quotient ofS by theU(1) action of states that differ by a ‘phase’,
i.e. the projective spaceP. The complex structureJ is the generator of theU(1) action
(J plays the role of the imaginary uniti when the Hilbert space is taken to be real). Since
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the phase rotations preserve the norm of the states, both the real and imaginary parts of the
inner product can be projected down toP.

Therefore, the structure onP which is induced by the Hermitian inner product is given
by a Riemannian metricg and a simplectic two-formΩ. The pair(g,Ω) defines a K̈ahler
structure onP (recall that a K̈ahler structure is a triplet(M, g,Ω) whereM is a complex
manifold (with complex structureJ ), g is a Riemannian metric andΩ is a simplectic
two-form, such that they are compatible).

The spaceP of quantum states then has the structure of a Kähler manifold, so, in
particular, it is a simplectic manifold and can be regarded as a ‘phase space’ by itself.
It turns out that the quantum dynamics can be described by a ‘classical dynamics’, that
is, with the same simplectic description that is used for classical mechanics. Let us
see how it works. In quantum mechanics, Hermitian operators onH are generators of
unitary transformations (through exponentiation) whereas in classical mechanics, generators
of canonical transformations are real-valued functionsf : P → R. We would then like to
associate with each operatorF onH a functionf on P. There is a natural candidate for
such a function:f := 〈F 〉|S (denote it byf = 〈F 〉). The Hamiltonian vector fieldXf of
such a function is a Killing field of the Riemannian metricg. The converse also holds, so
there is a one-to-one correspondence between self-adjoint operators onH and real-valued
functions (‘quantum observables’) onP whose Hamiltonian vector fields are symmetries of
the Kähler structure.

There is also a simple relation between a natural vector field onH generated byF
and the Hamiltonian vector field associated withf on P. Consider onS a ‘point’ ψ and
an operatorF on H. Define the vectorXF |ψ := d

dt exp[−JF t ]ψ |t=0 = −JFψ . This
is the generator of a one parameter family (labelled byt) of unitary transformation onH.
Therefore, it preserves the Hermitian inner product. The key result is thatXF projects down
to P and the projection is precisely the Hamiltonian vector fieldXf of f on the simplectic
manifold (P,Ω).

Dynamical evolution is generated by the Hamiltonian vector fieldXh when we choose
as our observable the Hamiltonianh = 〈H 〉. Thus, Schr̈odinger evolution is described by
Hamiltonian dynamics, exactly as in classical mechanics.

One can define the Poisson bracket between a pair of observables(f, g) from the inverse
of the simplectic two-formΩab,

{f, g} := Ω(Xg,Xf ) = Ωab(∂af )(∂bg). (3.2)

The Poisson bracket is well defined for arbitrary functions onP, but when restricted to
observables, we have,

〈−i[F,G]〉 = {f, g}. (3.3)

This is in fact a slight generalization of Ehrenfest’s theorem, since when we consider the
‘time evolution’ of the observablef we have the Poisson bracket{f, h} = ḟ ,

ḟ = 〈−i[F,H ]〉. (3.4)

We have seen that the simplectic aspect of the quantum state space is completely
analogous to classical mechanics. Notice that, since only those functions whose Hamiltonian
vector fields preserve the metric are regarded as ‘quantum observables’ onP, they represent
a very small subset of the set of functions onP.

There is another facet of the quantum state spaceP that is absent in classical mechanics:
Riemannian geometry. Roughly speaking, the information contained in the metricg is
concerned with those features which are unique to the quantum description, namely, those
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related to measurement and ‘probabilities’. We can define a Riemannian product(f, g)

between two observables as

(f, g) := g(Xf ,Xg) = gab(∂af )(∂bg). (3.5)

This product has a very direct physical interpretation in terms of the dispersion of the
operator in the given state:

(f, f ) = 2(1F)2. (3.6)

Therefore, the length ofXf is the uncertainty of the observableF .
The metricg also has an important role in those issues related to measurements. Note

that eigenvectors of the Hermitian operatorF associated with the quantum observablef
correspond to pointsφi in P at whichf has local extrema. These points correspond to zeros
of the Hamiltonian vector fieldXf , and the eigenvaluesfi are the values of the observable
fi = f (φi) at these points.

If the system is in the state9, what are the probabilities of measuring the eigenvalues
fi? The answer is strikingly simple: measure the geodesic distance given byg from the
point9 to the pointφi (denote it byd(9, φi)). The probability of measuringfi is then,

Pi(9) = cos2[d(9, φi)]. (3.7)

Therefore, a state9 is more likely to ‘collapse’ to a nearby state than to a distant one when a
measurement is performed. For a geometric approach to the ‘reduction of the state vector’
see [19]. We will now turn our attention to spin systems and in particular the quantum
theory of a spin-12 particle.

3.2. The spin-12 system

In this part we will find the quantum theory of a spin-1
2 particle starting from the classical

description of section 2. We will then discuss the quantum theory in the geometric language
just described.

3.2.1. Geometric quantization of spin systems.In section 2, we arrived at a kinematical
description for systems with ‘rotational degrees of freedom’, that includes spin systems. We
saw that the physically relevant space isR3 that is foliated by spheres of radiusS. That
is, for each value ofS we have a sphere which corresponds to the reduced phase space of
a particle with classical ‘intrinsic angular momentum’ equal toS. Since each sphere is a
simplectic manifold with a perfectly defined simplectic structure on it, we can employ the
machinery of geometric quantization that was outlined in the introduction.

We then have,0 = S2, �ab = S sinθ∇[aφ∇b]θ , where we have chosen spherical
coordinates(θ, φ) for the sphere. Note that the simplectic two-form is 1/S times the area
element of a sphere of radiusS.

The first step in geometric quantization is to construct the prequantum line bundle. There
are, however, some integrality conditions that must be satisfied so that the prequantum line
bundle exists. These conditions are the generalizations of the Bohr–Sommerfeld quantum
conditions:

1

2πh̄

∫
S2
� = k (3.8)

wherek is an integer. Since
∫
S2 � = 4πS, the condition readsS = h̄

2k. This is precisely the
quantization of spin! What this condition tells us is that the only simplectic manifolds that
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can be quantized are those that correspond to classical systems whose angular momentum
is an integer multiple ofh̄2.

The next step is to find a polarization in the phase space0. Note that the sphereS2 is
a compact manifold and therefore does not correspond to a cotangent bundle. Luckily the
sphere is a complex manifold and therefore admits a Kähler structure. We can coordinatize
it by z (recall that the Riemann sphere is the complex plane with the point at infinity). The
simplectic two form then reads,

� = ikh̄
dz ∧ dz̄

(1+ zz̄)2 . (3.9)

The Hilbert space of states will correspond then to holomorphic sections of a complex
line bundle over the sphere. A standard theorem in complex analysis shows that the space of
such sections isfinite-dimensional. Furthermore, holomorphic sections can be represented
as functions on the coordinatez as follows,

9(z) =
k∑
l=0

(
k

l

)
ψlz

l (3.10)

whereψl are constants. In this way, one gets all the finite-dimensional, unitary, irreducible
representations ofSU(2).

Since we are interested in the spin-1
2 representation, we have to consider thek = 1

case, that is, the ‘smallest’ quantizable sphere. The Hilbert space in this case is given by
elements of the form,

9 = ψ0+ ψ1z. (3.11)

Each element of the Hilbert space,H, will then be characterized by two complex numbers.
We have recovered the standardSU(2) two-component spinors. The inner product is then,

〈8|9〉 = 1
2(φ̄0ψ0+ φ̄1ψ1). (3.12)

For details see [2].

3.2.2. Geometry of a quantum spin-1
2 system. The spin degrees of freedom of a spin-1

2
particle provide a very clear example of the geometric structures described in section 2.1.
In this case the Hilbert space,H, is formed by vectors onC2 :

(
α

β

)
whereα and β are

complex numbers. As we saw above, it is convenient then to considerH as a real vector
space. Instead of a column vector inC2 we will have column vectors onR4:

9 =


a

b

c

e

 (3.13)

wherea, b, c, e are real numbers.
The Hermitian inner product〈9|8〉 between9 = (α

β

)
and8 = (γ

δ

)
given by

〈9|8〉 = ᾱγ + β̄δ (3.14)

induces a metricG and a simplectic two-form� on R4:

Gij = [∇ia∇j a +∇ib∇j b +∇ic∇j c +∇ie∇j e]
�ij = 2(∇[ia∇j ]b +∇[ic∇j ]e).

(3.15)

Normalized states then satisfy,

〈8|8〉 = a2+ b2+ c2+ e2 = 1. (3.16)
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Thus, the spaceS corresponds to the three-sphereS3.
We know that the quantum space of statesP will be the projection ofS3 under the

action of theU(1) action. That is,S has the structure of a principal fibre bundle with fibre
S1 and base spaceP = S2:

S1 −→ S3

π

y
S2.

(3.17)

This corresponds precisely to one of the Hopf bundles over the two-sphereS2.
In order to show the projectionπ explicitly and to recover common coordinates on the

sphereS2 we introduce the coordinates(α, β, δ) on S3 as follows,

a = cos

(
β

2

)
cos(δ + α)

b = cos

(
β

2

)
sin(δ + α)

c = sin

(
β

2

)
cos(δ − α)

e = sin

(
β

2

)
sin(δ − α).

(3.18)

It is straightforward to compute the induced simplectic structure onS:

�̄ij = sinβ∇[iα∇j ]β. (3.19)

It is clear that the degenerate direction of�̄ is ( ∂
∂δ
)j , which is precisely the direction of the

‘phase change’ generated byJ .
The induced metric onS is

Ḡij = ∇i (α)∇j (α)+ 1
4∇i (β)∇j (β)+∇i (δ)∇j (δ)− 2 cosβ∇(i (α)∇j)(δ). (3.20)

It is clear that�̄ corresponds to the pullback ofΩ underπ (�̄ = π∗Ω). We can find the
metric defined in the orbits of the degenerate direction, and define(g,Ω) on P = S2 with
ordinary spherical coordinates(θ = β, φ = 2α) to be

Ωab = 1
2 sinθ∇[aφ∇b]θ (3.21)

gab = 1
4[sin2(θ)∇a(φ)∇b(φ)+∇a(θ)∇b(θ)]. (3.22)

Quantum observables correspond onH to Hermitian 2× 2 matrices. A basis for those
matrices is given by the Pauli matrices. They are associated with the generators of rotations
in three dimensions and are the ‘angular momentum’ operatorsŜx , Ŝy and Ŝz, satisfying
ordinary commutation relations: [Ŝi , Ŝj ] = ih̄εijkŜk. We know that there are three functions
on P which correspond to the ‘observables’ in the ‘quantum phase space’;

x := 〈Ŝx〉 = h̄(ac + be) = h̄
2

sinθ cosφ

y := 〈Ŝy〉 = h̄(ae − cb) = h̄
2

sinθ sinφ

z := 〈Ŝz〉 = h̄
2

[(a2+ b2)− (c2+ e2)] = h̄
2

cosθ.

(3.23)

It is a curious fact that they are also the Cartesian coordinates of a sphere of radius ¯h/2.
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Let us now consider dynamical evolution. Without a loss of generality we can take the
Hamiltonian to beH = AŜz. The corresponding observable onP is h = 〈Ĥ 〉 = Ah̄

2 cosθ .
Givenh andΩ we can compute the equations of motion for the coordinates(θ, φ):

θ̇ = Ωab∂aθ∂bh = 0

φ̇ = Ωab∂aφ∂bh = −Ah̄.
(3.24)

That is, the quantum evolution is given by a ‘point’ travelling onS2 at constant ‘latitude’
θ and with constant angular velocitẏφ = −Ah̄.

Note that the quantum description in terms of ‘Kähler geometry’ for the spin-1
2

particle coincides exactly with the classical description given in section 2. for the chosen
Hamiltonian. The spheres in both cases have, however, very different origins. In one case
it is the smallest quantizablereduced phase space. In the quantum case it is theprojective
‘quantum phase space’ coming from the Hilbert space of states. For an alternative treatment
of the spin-12 with complex coordinates see [18].

4. Non-standard quantum Hamiltonian systems

Notice that our previous discussion means that it is possible to describe the quantization of a
system in two stages. In order to see this, it is simpler to think of these stages in reverse, that
is, as one method of constructing a classical theory from a known quantum theory. In this
‘classicalization’ one would begin with a Hilbert space,H, and a set of observables given as
linear operators onH. We could now project onto the space of raysP, which, since it is a
phase space itself and observables are now represented by real-valued functions, the system
is represented by a ‘classical theory’ with at least a large part (if not all) of the content
of the quantum theory defined on the Hilbert space. The main addition to this ‘classical’
theory is the probability structure given by (3.7) based on the Riemannian metricgab. If one
were able to ignore the probability structure of this simplectic manifold, one could think of
quantum mechanics onP as nothing more than another classical theory. Our programme
of ‘classicalization’ would then simply be a map fromP to another simplectic manifold
0, the phase space of the usual classical theory. This mapping is in general ‘many-to-one’
since the spaceP is much larger than0. If it is only a small subset ofP, the coherent
states, that will behave in a ‘semiclassical’ fashion. We can represent the process by the
following diagram,

Hy
P −→ 0.

(4.1)

The usual process of ‘quantization’ is to leap from0 directly toH, but one might just
try to reverse the direction of the arrows in (4.1), first constructing the ‘Kähler quantum
theory’ onP, then ‘raising’ the observables onP to Hermitian operators onH. Notice that
it could be possible to stop this procedure atP if one could be certain thatall the properties
of quantum mechanics (such as the superposition of states) could be realized in terms of
observables onP and the probability structure generated bygab.

The programme we are addressing in this paper involves, however, the ordinary
quantization process from0 to H and then considering the ‘projected’ geometrical
formulation onP. The classical theory we are starting with, having a modified simplectic
geometry defined on it, will yield a different geometry onP. That is, the simplectic structure
Ω on P will have some information of the corresponding one on0. The question we are
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led to ask is: Is the ‘non-standard’ geometry induced on the constructed quantum theory
compatible with experiment?

From now on we will restrict our attention to the simplest system at hand: the spin-1
2

particle, and show explicitly that there are obstructions to this procedure at each level. Given
that the various Hamiltonian descriptions for the classical system differ by only a conformal
transformation, the set of issues we will be addressing are the ones we called ‘dynamical’
in the discussion at the beginning of section 3. We shall encounter two difficulties in the
programme. First, while we will see that it is quite simple to mirror the change of simplectic
structure given by (2.15) and recover the dynamics of the quantum system onP (in the
sense of recovering the integral curves of the original system), but we will find that it
is more difficult to maintain the probability structure in terms ofgab that does not exist
in the purely classical system. Secondly, we will see that realizing the dynamics of the
non-standard Hamiltonian system in terms of a linear Hamiltonian operator is impossible in
most cases.

We would like to change the simplectic two-form onP for the spin-12 system and find
a new Hamiltonian function,̃h, which gives the same set of integral curves that are given
in section 3. We must also require that thephysical predictions are the same in terms of
measurement. Recall that the probability of measuring the eigenvalueoi of an operator
Ô when the system is in state9 is given by the geodesic distance from9 to the point
8i (Ô8i = oi8i): P(9, oi) = cos2[d(9,8i)]. This implies that in order to recover the
same physical predictions, not only the dynamical trajectory must be the same but also the
geodesic distance to the eigenstates.

Let us consider a double Stern–Gerlach experiment in which we first measureŜz and
then look only at the particles that had a spin ‘up’. In our picture, this corresponds to
considering a quantum state located at the ‘north pole’ (θ = 0). We now make a second
measurement with a new measuring device. The spatial orientation of the new apparatus
corresponds precisely to the orientation of the eigenstates (which lie on ‘antipodal points’) on
the sphere. The probability of measuring spin ‘up’ and ‘down’ will depend only on the angle
along maximal circles, from the north pole to the ‘podes’. Since the system is rotationally
symmetric, we can rotate both detectors while keeping their relative orientation fixed and
the probabilities will not change. That operation corresponds to ‘fixing the ‘up’ direction of
the detectors’ in(x, y, z) space and rotating the sphere. Since the distance along the sphere
must be the same, we conclude that the metric onS2 should be rotational symmetric, which
is a property of the metric inherited from the Hermitian inner product. Let us denote by
o
gab, the metric defined by equation (3.22)(

o
gab= 1

4[sin2(θ)∇a(φ)∇b(φ)+∇a(θ)∇b(θ)]).
We can conclude then that the metricg should be equal to

o
g, together with the integral

curves. The question that we are led to ask is: can we find a new�̃ and h̃ such that the
Hamiltonian vector fields of̃h andgab are the same? Since any two-form onS2 is given
by a conformal transformation from the ‘canonical’ two-formΩ defined by equation (3.21),
what we are looking for is precisely the conformal factorµ in section 2, such that,

�̃ab = µΩab. (4.2)

It is easy to see that we can find ah̃ such that the dynamical evolution is the same. The
condition, in the(θ, φ) coordinates, is(

0
−Ah̄

)
=
(

0 �̃θφ

−�̃θφ 0

)(
∂θ h̃

∂φh̃

)
. (4.3)
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This set implies that∂φh̃ = 0, or, h̃ = f (θ), so the system reduces to one equation:

Ah̄ = �̃θφf ′ (4.4)

wheref ′ = df
dθ .

Therefore,�̃θφ = Ah̄ 1
f ′ . To solve the system, we could fixf and then definẽ� from

the previous equation. This would give us the conformal factor asµ = −h̄A sinθ
f ′ .

However, recall thatP must have a K̈ahler structure, sog and� must be compatible
in the sense thatgab = J ca�cb. Can we change� arbitrarily and still have a compatible
system for fixedg? The answer to this question is, as expected, in the negative. This is
because in order to have a Kähler structure, the functionf ′ has to bef ′ = K sinθ . That
is, if and only ifµ = C, whereK andC are real and constant.

We have to conclude that for the spin-1
2 system it is impossible to have a non-standard

quantum Hamiltonian dynamics compatible with observation: there is no freedom to change
� andh.

The second obstruction when changing the simplectic structure in quantum mechanics
is that we would normally like to have the ‘K̈ahler quantum mechanics’ onP come from a
system of operators in a Hilbert space whose expectation values onP would generate the
observables. If we attempt to do this forh̃, and even if we were to ignore the negative
result above, we are still restricted by the fact thath̃ must be a function of onlyθ . Even if
we try to let h̃ be any function ofθ , in this simple case if̃h is to be the image of a linear

Hermitian operator on the space of vectors inH, the operatorˆ̃H must be of the form

ˆ̃
H = ζ I + η

2 Ŝx + κ
2 Ŝy + λ

2 Ŝz (4.5)

with ζ , η, κ, λ real. This means that

h̃ = ζ + η
2
〈Ŝx〉 + κ

2
〈Ŝy〉 + λ

2
〈Ŝz〉

= ζ + ηh̄
4

sinθ cosφ + κ h̄
4

sinθ sinφ + λh̄
4

cosθ (4.6)

must be a function ofθ . The only way to satisfy this for allφ is to takeη = κ = 0. This
means that the only possiblẽh that come from linear Hermitian operators are

h̃ = Kh+D (4.7)

whereK andD are real constants. In this case the newµ is µ = (1/K)µ0. All other

choices ofµ must lead to ˆ̃H , a nonlinear operator.
These two obstructions are very strongly related, since the only way to have well-defined

vector fields on a K̈ahler manifold is if they respect the complex structure (holomorphic
vector fields), and in turn, those vector fields correspond to Hamiltonian vector fields coming
from linear operators onH [17].

5. Conclusions and suggestions for further research

We have attempted to transfer to quantum theory an idea originally due to Hojman, that
perhaps the usual simplectic structure of classical mechanics is too restrictive, and it might
be possible to generalize it. In classical mechanics this is certainly the case, and it may
lead to new approaches to solving old problems, and can be used to construct Hamiltonian
theories for systems that have no variational principle, and thus no Hamiltonian in the usual
sense. We have considered this idea from the viewpoint of changing the simplectic structure
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and Hamiltonian of a system that does have a Hamiltonian. Classically this can be done
without a loss of generality, since we can easily generate the same solution curves for the
system for a large class of simplectic structures.

In the present article, we have investigated the simplest possible quantum system in
order to try to isolate sources of problems in quantizing non-standard Hamiltonian systems.
It is perhaps not surprising that we were able to achieve the same evolution of the quantum
states onP for any of our changes of Hamiltonian and Poisson structure, since this evolution
is nothing more than ‘classical’ Hamiltonian motion. The extra rigidity of a probability
structure was what caused our programme to fail for the simple spin-1

2 system. This provides
us with at least a hint that the basic problem in all systems will be in the probability structure
given by the Riemannian metric. This, too, is not surprising, since changing the Poisson
structure is related to changing the uncertainty relations for different observables of the
theory. These are in turn related to the ‘probabilities’ of finding the system in certain states.
We cannot be certain that the spin-1

2 system has all of the properties of higher-dimensional
systems, but it seems reasonable, from the discussion above, that we will always be able to
reproduce that evolution of the quantum states, but will encounter difficulties with probability
structures.

Our spin-12 system is also special in the sense that the spaceP and0 are both spheres.
This is so becauseevery state onP is a coherent state, and therefore exhibits an almost
classical behaviour [20]. For systems of higher dimensions than the spin-1

2 particle, either
we will have enough freedom to make changes in the simplectic structure without spoiling
the probability structure neccesary for quantum mechanics, or the programme will fail as it
did for our simple system. Given the manner in which the programme failed for the spin-1

2
particle, we conjecture that a similar failure will occur in more complicated systems. If this
is true we will have to use more general constructions than Kähler spaces to describe the
quantum system.

In our simple example, changing�ab on P leads to a disastrous change in the metric
gab on P that defines the probability. If it were possible to change�ab without changing
gab, we would have a simple solution to the problem. The difficulty here is equation (1.10),

gab = �acJ cb (5.1)

which relates�ab to gab through the complex structure tensorJ ab . Note that the complex
structure is required to be compatible withGab and obeyJ ba J

c
b = −δca. If we make a

similarity transformation (such as a coordinate transformation) onJ , J ab = Sac J
c
d (S
−1)db ,

J ba J
c
b = −δca is preserved. If one makes such a transformation, both�ab andgab change as

‘covariant tensors’, which is perfectly acceptable. Notice that if we were to make a more
complicated transformation, such as a conformal transformation, on�ab, �ab → ϕ�ab,
and at the same time insist thatgab remain unchanged in order to preserve the probability
structure, we would have to allowJ ab → (1/ϕ)J ab , and J ba J

c
b = −(1/ϕ)2δca, which is

negative definite and non-singular as long asϕ is finite and non-zero, but does not obey the
defining equation of a complex structure tensor.

In higher-dimensional phase spaces the Hojman transformation�ab → Kc
a�cb would

imply that to maintain the metricgab invariant one would have to takeJ ab → J ′cb =
J ac (K

−1)cb, and, in principle, since the Hojman transformation contains the conformal factor
µ, we might expect thatJ ′ab J

′b
c would not be equal to−δac , just as for a conformal

transformation. In that case, it would be necessary to postulate ‘pseudocomplex structures’,
whereJ ab J

b
c would be negative definite multiples ofδac but not necessarily−δac , in order

to preservegab on changing�ab. Note, however, that while the Hojman transformation
for a two-dimensional phase space reduces to a pure conformal transformation, the more
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general transformation allowed in higher-dimensional phase spaces may still allow us to
write J ′ab J

′b
c = −δac , in which caseJ ′ab is nothing more than a ‘deformed complex structure’,

and this concept has been studied for some time [21]. It is necessary to investigate whether
the Hojman transformation allowsJ ′ab J

′b
c = −δac or not. Another possibility would be

the investigation of complex manifolds that admit more than one simplectic structure, the
hyperKähler manifolds.

Another construction that would permit changing the simplectic structure without
deforming the complex structure would be to allow the appropriate transformation ongab that
would preserveJ ab (in the spin-12 case a conformal transformation) and define probabilities
in some ‘conformally invariant’ fashion. We will not attempt to consider this idea further
here.

One remark is in order. The phase space of the system we started with, namely
the sphereS2, is somewhat special. Perhaps the most notorious property is that it is a
compactmanifold. As a consequence, the Hilbert space in the quantum theory isfinite-
dimensional. Furthermore, it has recently been shown that theonly classical observables
that can be quantized in a way that the prescription{, } → ih̄[, ] is satisfied exactly, are
the generators of rotationssi [22]. This is the equivalent, forS2, of the Groenewold–
Van Hove theorem[23]. Our result for the spin-1

2 system is therefore another indication
of the ‘rigidity’ of the structures one can define on the sphere. This has to be contrasted
with higher-dimensional (non-compact) phase spaces for which the quantum theory is much
richer (infinite-dimensional Hilbert space). In this case one has in fact an infinite number
of possible complex structures (this freedom is similar to the one that leads to different
inequivalent representations of the CCR in QFT). In this case, the non-standard quantum
theory has to satisfy the ‘kinematical’ requirements related to the Heisenberg uncertainty
principle, and possible super-selected sectors, in order to be considered ‘valid’. A complete
study of the most general case is therefore, still open.

Finally, note that if it were possible to be sure that all of the content of quantum
mechanics could be achieved in terms of the evolution and structure of points inP, we
would not need to worry about the fact that the time evolution of states, for example, is a
reflection of evolution in the Hilbert space,H, that is generated by a nonlinear Hamiltonian
operator. If this is not so, then we would be forced to consider the possibility of nonlinear
evolution in quantum mechanics, an idea that has been proposed by several authors [18, 24],
but one should be justifiably reluctant to propose such a drastic modification to, at the very
least, a one-particle model.

Our investigation of the spin-1
2 system has given us a glimpse of possible obstructions

to doing quantum mechanics based on non-standard Hamiltonian dynamics. While our low-
dimensional example may not have enough freedom to allow different simplectic structures,
we feel that the type of failure observed there will be a feature of higher-dimensional
systems. This, of course, must be studied. If the feature is a general feature, more
complicated constructions must be considered. All of these problems will be considered in
future articles[25].
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