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Abstract. The quantization of classical theories that admit more than one Hamiltonian
description is considered. This is done from a geometrical viewpoint, both at the quantization
level (geometric quantization) and at the level of the dynamics of the quantum theory. é spin-
system is taken as an example in which all the steps can be completed. It is shown that the
geometry of the quantum theory imposes restrictions on the physically allowed non-standard
quantum theories.

1. Introduction

The problem of quantization of a classical theory is at least 70 yr old, but the term
‘quantization’ always has had a somewhat loose meaning. There is no such thimg as
guantization prescription that takes a classical theory and produces the ‘correct’ quantum
theory.

There are three main approaches to canonical quantization: algebraic [1], geometric [2],
and group theoretic quantization [3]. They differ, roughly speaking, in the basic structures
on phase space that they regard as fundamental in order to construct a quantum theory. In
each of these approaches one is led to make several choices along the way that might yield
inequivalent quantum theories. Well known examples of these ambiguities are the factor
ordering problem and different representations of the CCR in QFT, for example.

The quantization schemes mentioned above have, however, a common feature. They
assume that the classical system to be quantized is unique, that is, that there is a preferred
classical description for the system. On the other hand, from the classical viewpoint,
there might be more than one perfectly valid way of representing a given system. These
alternative descriptions are calladn-standardHamiltonian systems. The aim of this paper
is to explore the possibility of quantization starting from different classical theories.

The programme of quantization of a non-standard Hamiltonian dynamics has its roots
in work of Feynman reported by Dyson [4] and its extension by Hojman and Shepley [5].
Feynman’s original work showed that Poisson-bracket relations place strong constraints
on the types of forces allowed in physical systems. Hojman and Shepley generalized
Feynman’s work and were able to show that a consistent quantization with a set of
commuting coordinates led to a second-order Lagrangian in those coordinates. Hojman
then constructed a consistent Poisson-bracket Hamiltonian theory for first-order equations
of motion of the formi’ = fi(x/) [6]. We will discuss this formalism in more detail below.

1 E-mail address: corichi@phys.psu.edu
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This programme could be seen as yet another ambiguity in the quantization process or,
if viewed from a different perspective, as a new avenue for finding possibly valid quantum
theories. This would be the case, for instance, if the given system has more than one
classical description without argypriori criteria for choosing the ‘correct’ one.

We will proceed as follows. In the introduction we will recall the basic steps of
geometric quantization, pointing out the choices one makes in the process and discussing
the possible implications in the final quantum theory. Section 2 reviews the possibility
of different classical descriptions or ‘non-standard Hamiltonian systems’. We consider
as an example the classical s@rparticle. Section 3 recalls the geometry of quantum
mechanics as proposed by Ashtekar and Schilling [16], focusing on the%spa’micle.

We have chosen this simple system because it shows the connection between the classical
and quantum system very clearly, even though this simplicity means that the system is so
constrained that there is very little freedom to allow consistant quantization of non-standard
Hamiltonian systems. The basic programme is discussed in section 4 for the spinning
particle. The obstructions to quantizing the non-standard description are isolated. Section 5
discusses the results and suggests some directions for further research. Throughout the
paper, the ‘abstract index notation’ is employed. For a discussion on the notation see [7].

1.1. Geometric quantization

By quantization we mean the process of finding a quantum theory from some known classical
theory. The starting point for all canonical quantization schemes is a classical system
described in terms of simplectic geometry. Let us recall the basic notions in order to set
the notation [8, 9].

The phase spacef the system consists of a manifolt of dimension dinfl") = 2n
(real). Physical states are represented by the points on the mani@idervablesare
smooth functions o’. There is a non-degenerate, closed two-f@endefined on it. That
is, the formQ,, satisfiesV|. Q. = 0, and if Q,,V? = 0 thenV? = 0. Therefore, an
inverse Q¢ exists which defines an isomorphism between the cotangent and the tangent
space at each point @f. The existence of theimplectic two-form2 endows(I", 2) with
a simplectic structure

A vector field V¢ generates infinitesimal canonical transformations if its Lie drags the
simplectic form, i.e.

Ly =0. (1.1)

This condition is equivalent to saying that locally it is of the fori® = Q*V, f = X?

and it is called thédamiltonian vector field of (w.r.t. ). Note that the simplectic structure

gives us a mapping between functionsorand Hamiltonian vector fields. Thus, functions

on phase space (i.e. observables) are generators of infinitesimal canonical transformations.
The Lie algebra of vector fields induces a Lie algebra structure on the space of functions.

{f.8) = QuXiX)=Q"V,fV)g (12)

such thatX{, , = —[X;, X,]*.
Since the simplectic form is closed, it can be obtained locally frazimgplectic potential
wa;

Qab = ZV[aa)h]. (13)

Time evolution is given by a vector field;*, whose integral curves are the dynamical
trajectories of the system. On phase space therepieferred function, theHamiltonian
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H, whose Hamiltonian vector field corresponds directlyftq i.e.
fa — Qabva. (14)

Adopting the viewpoint that all observables generate canonical transformations we see that
the motion generated by the Hamiltonian corresponds to ‘time evolution’. The ‘change’ in
time of the observables will be simply given by the Poisson bracket of the observable with
H (¢ = f"Vig = Q*V,gV,H = (g, H}).

So far, not very much has been assumed about the phasel3p#aean be any (even-
dimensional) manifold with complicated topology, compact, open, etc. The simplectic
structure2 and the functiond are assumed to be givenpriori. Note that they might not
be unique. From the classical viewpoint the only ‘observable’ entities are the dynamical
trajectoriesf“ of the system (the equations of motion). They could have come from more
than one pair2, H)f.

However, if the system has a configuration spacéhen the phase space is automatically
‘chosen’ to be the cotangent bundle of the configuration sfgéce There is also a preferred
one-form on7T*C which can be taken to be the simplectic potential which determines
uniquely the simplectic structure (the Liouville form). Therefore, the fact that a configuration
space exists picks out for us the phase space and the simplectic two-form.

The programme of quantization can be divided into two parts: kinematical and
dynamical. The kinematical part deals with the problem of defining a good prescription
for going ‘from Poisson brackets to commutators’ in a consistent way. That is, it should
start with the classical system and produce a Hilbert space of states. The dynamical part
deals with the Hamiltonian, i.e. the generator of dynamical evolution.

We will concentrate on geometric quantization whose starting point is a simplectic
manifold (T", ). There is noa priori assumption about the structure of the phase space
It can be completely general. In particular it can include the case in whighcompact,

i.e. it is not a cotangent bundle.

There are two steps in geometric quantization. The first one involves defining a Hilbert
space on the full phase space. Wavefunctions are, roughly speaking, functidnsAsy
observable can be ‘quantized’. The second step involves introducing an additional structure
on I', a polarization that will select those wavefunctions that depend only on ‘half of the
coordinates’. Physical observables are those that respect, in a way to be defined below, the
polarization.

We start with a Hamiltonian system as defined above. We define what are called
prequantum wavefunctiong'hey are cross section#;, of a complex line bundle over.

The correspondind/ (1) connection is the simplectic potential, whose curvature is the
simplectic two form,,. For each trivializationw, a function ¥,, corresponds. If we
changew by a gauge transformatian, — o, + V,g then

v, =d¢/hy, . (1.5)

There is a Hermitian inner product in this complex vector space given by the Liouville
measure orl". The pre-Hilbert space would be the completion with respect to this inner
product.

Any observablef (f : ' — R) has a corresponding symmetric operatoy, defined

by:
h h i
OV = ij‘zva\y + fW = TX]‘Z <aa - }_la)a) U+ fu. (1.6)

1 There is another, even more drastic, possibility. There could be angthehat could have the same integral
curves asf“. Such systems are calledequivalent [10]. We will not consider them here.
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Note that we are now extending the definition¥fto ‘act’ on sections¥ of the complex
line bundle. These operators are: (i) linear; (ii) gauge-covariant, (ii) symmetric (formally
self-adjoint).

The assignmenf — Oy is one-to-one and preserves the natural Lie algebra structure,

[0f, O,] = —ih Oy (1.7)

that is, one can assign a consistent operator to all observables.

It is known that ‘actual’ quantum wavefunctions depend only on ‘half’ of the variables.
We have to ‘split'T" into two parts. This is done by choosingpalarization P. At each
point, y, it assigns a maximal subspadel,, of the complexified tangent space such that:

(i) v¢ andW*“ € P|, then [V, W] € P|, for all y;

(i) for all V¢, W* e P thenQ,, VW’ =0 for all y.

If P is real we have a ‘real polarization’. The first condition implies that through each
point of I" there passes am-dimensional submanifold, which is tangent to the subspace
P|,. The phase space is then foliateddsdimensional submanifolds. The second condition
implies that the Poisson bracket of any two coordinates of this submanifold vanishes.

Given a polarization, guantum wavefunctiois a cross sectiony, satisfying

VIV, W =0 (1.8)

for all V¢ € P. This is called thepolarization condition

This condition tells us that the wavefunction depends onlyronoordinatesg’ ‘in
involution’. (For instance, if we have a configuration spa€e,with coordinates;’, the
standard polarization is the ‘vertical polarization’ spanned{g}f}. We then have that
{g'.9’}=0.)

Classical observables whose pre-quantum operators become well-defined operators are
good observablesThe condition is,

[0/, VIV,]¥ =0 (1.9)

for all V¢ € P. This can be written classically aX|, V]¢ € P for all V* (Ly Xf € P).

We say then thak; preserves the polarizatior. In particular, the operators corresponding

to the coordinateg’ preserve the vertical polarization and are therefore good observables.
A special kind of complex polarization is calledaKler. An almost complex structure

is a tensor fieldJ,? such thatJ,”J,c = —§,¢, and it is a canonical transformation:
JL 14 Qg = Que. Then,
8ab = Qe (1.10)

is symmetric, non-degenerate, positive definite metric. The triflet/, g) equipsl” with an
almost Kahler structure. We can construct on the phase space a Hermitian (complex) inner
product whose real part is given lgyand the imaginary part b, i.e.(,) = %g(, )—129(, ).

The tensor field,J, has eigenvectors in the complexified tangent space. Let us
decompose any (complexified) into two parts,

Vi = J(VEFiTVP) (1.11)
whereV¢{ is an eigenvector of with eigenvalue. Let us choose the vector space spanned
by those eigenvectors. It is andimensional (complex) vector space, dag, V¢ Vb =0. If
the distribution is integrable (the manifold can be given as complex charts), the polarization
is called Kahler.

In this case the polarization condition, on the section of the Hermitian line bundle,
involves consideringholomorphic sections. When the phase spaceis compact it is
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necessary to have holomorphic sections. This is relevant, for instance, for the quantization
of spin systems.

Note that prequantization is a purely kinematical step. It produces a (non-physical)
Hilbert space onl" and every observable is prequantizable. There is no external input
(other than the original$2, H) pair).

The choice of polarization, on the other hand, has both kinematical and dynamical
content. It is kinematical because it singles out the physically relevant quantum states from
the prequantum Hilbert space and defines what the physically admissible observables are,
namely those that preserve the polarization. This choice also has dynamical implications
since the Hamiltonian mightot be compatible withP. It is the choice of polarization that
might lead to inequivalent quantum theories.

2. Non-standard classical theory

As we mentioned in the introduction, we are interested in considering systems that might
have a non-standard classical description. By this we mean systems that admit more than
one Hamiltonian formulation or systems that obey certain equations of motion thadtdo
come from a variational principle.

This section has two parts. In the first we review the non-standard Hamiltonian systems
mentioned above, considering a generalization of the simplectic formalism, namely that of
Poisson structures on a manifold. The second part takes a spinning classical particle as a
particular example of a system that admits non-standard descriptions.

2.1. Poisson structures and non-standard dynamics

In the introduction we gave an overview of the standard Hamiltonian dynamics in terms of
a simplectic structur€,,,. It is possible to define dynamics by introducing a more general
structure known as Roisson (bracket) structur8, 9]. It consists of a bivectofl*> = I1l¢/]

on I satisfying the Jacobi identity:

v, me = o. (2.1)
It defines naturally a ‘generalized’ Poisson bracket between functioris on

{f. gln =TV, fV,g. (2.2)
It also defines a mapping from functions to vector fields

X4:=T1V, . (2.3)

Note thatTT*’ might be degenerate, in which case there will@asimir functions For
instance, ifV,C is a degenerate ‘direction’ dfi*’ (I1°’v,C = 0), then{f, C}; =0, Vf.
That is,C ‘commutes’ with all functions of".

In the case of a non-degenerate simplectic structure, its inv@féedefines (locally) an
‘almost’ one-to-one mapping between functions and Hamiltonian vector field, that is, two
functions will define the same vector field if they differ by, at most, a constant function.
On the other hand, for a degenerate Poisson structure, given a Casimir fufictizen two
functions f and g will define the same vector field} = v, fif f = g+ h(C) where
h(C) is any (differentiable) function ofC.

Given a phase spade, the dynamical evolution of a system is given by the integral
curves of a vector field’*. The vector field gives at each point bf a set of equations
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of motion for the system. If we choose some local coordinatesu = 1, ... 2n, then the
rate of change of each coordinaté is given by the Lie derivative af* along V¢,

= Lyxt = VIV, (xH) = VH(x). (2.4)
Recall that in thex* coordinate systemy® = V#(x)(-2.)%.

m

A natural question is whether the given systen?xof first-order differential equations can
be put in a Hamiltonian form. That is, does there exist a Poisson strufltfteand a
function # such thatV® = T1°V,h? If the set of equations came from a (second-order)
variational principle, then the Poisson structure is the inverse of the (naturally defined)
simplectic structureﬂg(,’]) onI' = T*C and the Hamiltoniank, is the Legendre transform
of the Lagrangian (for non-singular systems).

There might be, howevemore than onePoisson structure that makes the equations
Hamiltonian, with another Hamiltonian. Those systems are knowi-a&miltonian [11].

In the case when the set of equations does not come from a variational principle, there
is in principle no natural way of putting them in Hamiltonian form. A programme for doing
this has recently been proposed by Hojman [6]. The underlying idea is that one should
use the symmetries of the equations of motion in order to construct a Poisson structure.
Let us summarize the Hojman construction for systems Witk 2n constants of motion
C;, (N — 1) of which do not depend explicitly on time. That is, one knows them as
explicit functions of the coordinates (a fairly strong requirement, equivalent to knowing
the full classical solution). The preceding requirement is sufficient to be able to reduce
the equations to Hamiltonian form. It is, of course, not necessary for constructing the
Hamiltonian theory.

This IT*’ may be constructed by summing elements of the form

M = p(x)e® 42y, Cy...V,, ,Cn_2 (2.5)
where g¥*1-*v-2 js the N-index Levi-Civita symbol, andw(x) is a function of the
coordinates to be explained below. THI&" satisfies the Jacobi identity. T, ..., Cy_»

are time-independent constants of motion. The Hamiltonian is definddl yCy_1, along

with Cy =t +dy, Wheredy is time independent. This can always be achieved by a change
of coordinates. Hojman has another construction that uses a symmetry of the equations of
motion, without needing to know some constants of motion in the explicit form. For more
details see [6].

Suppose that for a given set of equations that come from a Lagrangian, we have been
able to construct a non-degenerateoy means of the Hojman procedure. Let us denote by
€/, the corresponding two-forme2,, 1> = §¢). If the Poisson structurél is compatible
with 71, then there will be a tensor fieldf{ such that

Q, = K‘Qup. (2.6)

Note that sinceQ is invertible, we then hav&d = @/, " We will call this mapping a
Hojman transformation

2.2. Classical description of a spi%vparticle

As we mentioned in the introduction, the example we would like to use to describe the
change of Poisson structures in quantum mechanics is the simplest quantum system, that of
a spin% particle. In order to investigate the relationship between the classical and quantum

theories we would like to study the classical problem equivalent to that of a quanturé spin-

T Two Poisson structures are said todmmpatibleif their sum is also a Poisson structure [11].
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particle. The main difficulty with this idea is that, strictly speaking, there is no classical
limit to this problem. There are a number of ‘classical’ limits that have been proposed [12],
but we will use a limit in terms of Grassman variables. We would like to find a limit of the
quantum theory based on the three spin operafpes fio;, the o; the Pauli matrices with
Hamiltonian A = AS;, A = constant. Notice thas? = 72, and [;, §;] = ke, x5, and
(8,8} =0,i # j. Ash — 0, we get§? =0, [§;, §;] = 0 and(S$;, §;} = 0, and there is
no set of classical numbers that can obey these relations. If we write the classical variables
as S; = es;(t), where thes; are commuting functions of and ¢ is a constant Grassman
number, thens? = 0 (s = 0), [S;, S;] = 0= {Si, S;}+-

Assume we have a Hamiltonia/, in principle a function of some coordinates,
i = 1,23, andS; = Bupr, Where thep; are the momenta conjugate to the and
Bij = Bij(g) (the angular velocities am®; = ;;j(q)g;, wherew;;Bjx = éix), then

) OH
S; r—38, =0 2.7
1+7’1k€aSk ¢ (2.7)

if H does not depend explicitly on thg, i.e. H = H(S;). For a rigid bodyyj,, =
agm(%ﬂnj — By Buk) = —¢€jke. If we take H = AS3 then

94 9qn

Si = ez ASk (2.8)
or,

&8 = gz Aesy (2.9)
and

S; = &3k Asg. (2.10)
These imply thak; = constant= K; and

§1= —Asy (2.11)

§2 = Asy (2.12)

s0s7+s2 = constant. These mean thgt+ s2 + s3 = S = constant which implies that the
classical-state space is a two-sphere. The system’s orbits lie on the two-sphere ofSradius
and sincess is a constant they are parallels of ‘latitude’. If we look at the equations;for

s3 =0 and (2.11), (2.12), they can be written as

oH
LY 3Sj
with H = As3 and H,'j = &ijkSk-

This is precisely an example of a very well studied system with a Poisson structure.

Systems that have rotational degrees of freedom (a rigid body for example), have a common
description coming from the fact that the rotation grau@(3) acts on the system, as we
now recall [8,9]. The phase space is given by a three-dimensional vector space (that we
can identify with R®) with coordinatess; (it is the dual of the Lie algebrd0(3)). The
Poisson structure is given by

Hi_j = Ck,'jsk (214)

(2.13)

5 =

where C",»j = 8"”»3,“»]» are the structure constants 80 (3). It is clearly degenerate (any
asymmetric tensor field in an odd-dimensional space is). Note, howeverdIthéduces
a non-degenerate simplectic structure on each sphere of r&diu&’ is then foliated by
leavesof simplectic manifolds. Furthermore, the ‘natural’ Casimir functioKis= 36" s;s;
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which is clearly constant on each sphere. All Hamiltonian vector fields generatBdaog
tangent to the spheres and therefore leave the Casimir unchanged.
Note thatIT can be written as

0Ko
I;; = Enij 5 (2.15)

which is precisely of the form of (2.5).

A remark is in order. With our formalism we could recover the Euler equations for
a rigid body if we choose the Hamiltonian to be the kinetic enefgy= 1'/s;s;, where
I/ is the inverse of the inertia tensor. The Hamiltonian we have chosen for our system,
H = Ass, is therefore not the ‘kinetic’ energy of a rigid body, but resembles more that of a
‘point-like’ object that might interact with an external potential (a constant magnetic field,
for example).

The idea now, in order to find different descriptions for the system, is to use the
Hojman prescription for different constants of motion. We have the functions s3 and
K> = 52 + s3. Following Hojman [13] we can now tak€ = C(K1, K), any arbitrary
function of (K1, K»), and a new ‘HamiltonianH = H (K3, K3), also any function ofK;
and K,, and define

aC
I;; = M(SE)SijkT- (2.16)
S

We would then like to have the equations of motion fpas
- 0H
ijafsj-
We can have the same equations as before if we chpgseperly andC and H satisfy
one condition. If we look at thes equation we have
. aC K1 aC K> 0H 0K1 0H 0K>
9C 0K; 0C 9K, |[ 0H 0K, 0H 3K,
and sincek; does not depend an or sy,
aC 0H oC oH
0K, 9K aKzaKJ

5 =

(2.17)

(2.18)

S‘3 = —2/LS1S2 |: =0. (219)

For s1
) aC 0K, dC 0K> || 0H 0Ky, 0H 0K
Si=p| ot o e e o
3K1 3S3 8K2 3S3 3K1 3S2 3K2 3S2
dC K1 n aC dK> dH K1 n 0H K>
H* 8K1 3S2 8K2 3S2 8K1 3S3 3K2 3S3
aC 0H aC oH
dK1 0K, 03K,90K1 |

We can achievé; = —As, if A = [f—lflg’—li’z - a%% # 0 and we takg. = — 4. Itis easy
to show that his choice gk also givess, = As;, SO we recover the original equations of
motion.

As an example of this procedure, take the normal Hamiltoras Ass andC = s3+s3.
If we look at the planes; = 0O, the orbits intersect the circlg + s5 = 1. The lines of

constants3 = H/A and C are perpendicular straight lines that form a coordinate grid over

= 2us2 [ (2.20)
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the half plane given by thess-plane withs, > 0. The sphere? + 52 + 52 = S? intersects
this half plane in a semicircle, and any point on this semicircle represents the initial point of
a possible orbit, and if we rotate the semicircle aroundsthaxis then a point on it traces
out a parallel of ‘latitude’. In the rectangular grid 6f and H/A we can always specify
this point by particular values of and H/A.
Now, the equation fos; is

ds; 3C OH

B o O 221
a4 w(se)eiji b 95, ( )

Note that this has the form

d

on — 1(s)(VH) x (VC) (2.22)
where VC and VH are the two-dimensional gradients 6f and H which are the the
normals to the coordinate curves. We haWéf x VC = |VH x V(C|ey, wheree; is the
unit vector in thes; direction. Since in the; = 0 plane

ds1

T =—A 2.23
o 52 (2.23)

we see that (2.22) gives this if we take= —As,/|[VH x VC|. From [13] we see that
this u works for all sq, s».

As long as they form a complete coordinate grid in thg-plane, any function€ and
H can be used in the formulation. Note thatVWH is parallel toVC at any point (or
the norm of one of the vectors is zer@),blows up. This is the condition in [13] for the
non-existence oft. Notice also that is no longer the energy.

Let us now try to understand what we are doing from a geometrical viewpoint. The fact
that we are using a preferred function (the Casimir) to define the Poisson structure means
that one-formsw, ‘transverse’ to theC = constant surfaces are precisely the degenerate
directions of[1. Hamiltonian vector fields are always tangent to the surfaces and therefore
the motion they generate lies within them. In the standard case of the rigid body, for
example, the surfaces on which the Casimir is constant are spheres precisely because they
are the orbits of the rotation group (coadjoint action on the dual of the Lie algebra) on
R3. The simplectic structure induced on the spheres from the Poisson structit@ isn
precisely (¥S times) the area element (recall that any non-degenerate two-form on a surface
is proportional, by means of a conformal factor, to the area element).

Suppose that we now define a new Poisson structure via a function whose surfaces of
constant value are not spheres but some ‘ellipsoids’ (with rotational symmetry around the
s3-axis). Now, the surfaces will not be the orbits of the rotation group in three dimensions
(see [13] for a particular choice in which the resulting deformed algebsi€),). The
change in the induced simplectic structure, the ‘Hojman transformation’, will be a simple
conformal transformation. We can conclude then that by a rescaling of the simplectic
structure and a corresponding change in the Hamiltonian, we have an infinite number of
classical descriptions for the system.

As we mentioned above, we would now like to apply the idea of changing the simplectic
structure to quantum mechanics. In the next section we will discuss this formulation and
its extension to ‘Khler quantum mechanics’ in the context of the s%,)iaxample outlined
above. We will see that two obstructions to doing this in the most simple-minded way
exist. These are both related to the fact that we need to define a probability structure on
the quantum-mechanical phase space. Probability structures are often given in terms of
linear operators on a Hilbert space. We will see that both the definition of probabilities in
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‘K ahler quantum mechanics’ and the realization of dynamical quantities as linear operators
place constraints on the possible simplectic structures that are allowed. Since the system is
basically two-dimensional, we will see that these constraints are so strong that there is no
way to change the simplectic structure without changing the quantum physics of the system.
Whether this is a feature of higher-dimensional systems is an open question.

3. Quantum mechanics

The problem we want to address in this paper is the possible quantization of systems that
admit non-standard descriptions. If the system admits more that one classical description,
we are led to ask whether the quantum theories are equivalent. If not, what are the criteria
to choose the ‘correct’ classical description?

As we mentioned in the introduction, there are, roughly speaking, two different sets of
issues concerning quantum mechanics that one has to address: kinematical and dynamical.
The kinematical conditions, so to speak, that the constructed quantum theory should satisfy,
are mainly related to the Heisenberg uncertainty relations. Commuting quantum observables
can, in principle, be simultaneously measured. Such quantum observables correspond to
classical observables that have vanishing Poisson brackets among them. Therefore, there is
in principle a way of distinguishing between, for instance, two different Poisson structures.
If the Poisson structure in the classical theory is degenerate, there will be Casimir functions
and, therefore, corresponding quantum Casimir operators. This will lead to ‘super-selected’
sectors that should be detected experimentally.

There is another set of issues that one has to consider when analysing the dynamical
content of the theory. Quantum mechanics is a theory of measurement. If the theory is
to pass the test of ‘validity’, it should provide probabilities for measuring eigenvalues of
various operators as functions in time, that should be compatible with measurements. This
is a condition to be satisfied by the dynamical evolution of the quantum system. This
condition is analogous to the corresponding classical condition that the dynamical evolution
should be the integral curves of a preferred vector field. This ‘dynamical condition’ has a
very clean geometrical formulation when quantum mechanics is cast in geometric language.

3.1. Geometry of quantum mechanics

Quantum mechanics, with all its postulates, can be put into geometric language. In this
section we will recall the geometry of quantum mechanics. For details see [14-18].

The description we will give is for systems with a finite-dimensional Hilbert space but
the generalization to the infinite-dimensional case is straightforward [17]. Dendkethg
space of rays in the Hilbert spaéé. In this caseP will be the complex projective space
CP", sinceH can be identified withC".

It is convenient to viewH as areal vector space equipped with a complex structure

(recall that a complex structutgis a linear mapping : H — H such that/? = —1). Let
us decompose the Hermitian inner product into real and imaginary parts,
(WD) = G(V, d) —iQ(T, D) (3.1)

whereG is a Riemannian inner product dif and 2 is a simplectic form.

Let us restrict our attention to the sphef&, of normalized states. The true space of
states is given by the quotient 6fby the U (1) action of states that differ by a ‘phase’,
i.e. the projective spac®. The complex structurd is the generator of th& (1) action
(J plays the role of the imaginary unitwhen the Hilbert space is taken to be real). Since
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the phase rotations preserve the norm of the states, both the real and imaginary parts of the
inner product can be projected down7o

Therefore, the structure oR which is induced by the Hermitian inner product is given
by a Riemannian metrig and a simplectic two-forn§2. The pair(g, 2) defines a Khler
structure onP (recall that a Kahler structure is a tripletM, g, ) where M is a complex
manifold (with complex structure/), g is a Riemannian metric anf is a simplectic
two-form, such that they are compatible).

The spaceP of quantum states then has the structure of &lr manifold, so, in
particular, it is a simplectic manifold and can be regarded as a ‘phase space’ by itself.
It turns out that the quantum dynamics can be described by a ‘classical dynamics’, that
is, with the same simplectic description that is used for classical mechanics. Let us
see how it works. In quantum mechanics, Hermitian operatorg§{oare generators of
unitary transformations (through exponentiation) whereas in classical mechanics, generators
of canonical transformations are real-valued functigns? — R. We would then like to
associate with each operatéron H a function f on P. There is a natural candidate for
such a function:f := (F)|s (denote it byf = (F)). The Hamiltonian vector field(; of
such a function is a Killing field of the Riemannian metgic The converse also holds, so
there is a one-to-one correspondence between self-adjoint operatétsaod real-valued
functions (‘guantum observables’) dhwhose Hamiltonian vector fields are symmetries of
the Kahler structure.

There is also a simple relation between a natural vector field{ogenerated byF
and the Hamiltonian vector field associated wjthon P. Consider onS a ‘point’ ¥ and
an operatorF on H. Define the vectorXr|, = %exp[—JFt]WIt=o = —JFy. This
is the generator of a one parameter family (labelled)ogf unitary transformation or.
Therefore, it preserves the Hermitian inner product. The key result issthgtrojects down
to P and the projection is precisely the Hamiltonian vector figldof f on the simplectic
manifold (P, £2).

Dynamical evolution is generated by the Hamiltonian vector figldwhen we choose
as our observable the Hamiltonian= (H). Thus, Schidinger evolution is described by
Hamiltonian dynamics, exactly as in classical mechanics.

One can define the Poisson bracket between a pair of observgblgsrom the inverse
of the simplectic two-fornf2<?,

{f, 8} 1= Q(X¢, Xp) = Q0. 1)(8). (3.2)

The Poisson bracket is well defined for arbitrary functions7nbut when restricted to
observables, we have,

(—I[F,G]) ={f. g}. (3.3)

This is in fact a slight generalization of Ehrenfest's theorem, since when we consider the
‘time evolution’ of the observablg¢ we have the Poisson brackif, z} = f,

f = (=ilF, H]). (3.4)

We have seen that the simplectic aspect of the quantum state space is completely
analogous to classical mechanics. Notice that, since only those functions whose Hamiltonian
vector fields preserve the metric are regarded as ‘quantum observablBstlogy represent
a very small subset of the set of functions Bn

There is another facet of the quantum state sgadeat is absent in classical mechanics:
Riemannian geometry. Roughly speaking, the information contained in the ngetsic
concerned with those features which are unique to the quantum description, namely, those
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related to measurement and ‘probabilities’. We can define a Riemannian profjuot
between two observables as

(f, 8) = 8(Xs, Xo) = g (3u f)(38). (3.5)

This product has a very direct physical interpretation in terms of the dispersion of the
operator in the given state:

(f, f) = 2(AF)?. (3.6)

Therefore, the length ok, is the uncertainty of the observahte

The metricg also has an important role in those issues related to measurements. Note
that eigenvectors of the Hermitian operatbrassociated with the quantum observajle
correspond to pointg; in P at which f has local extrema. These points correspond to zeros
of the Hamiltonian vector field(s, and the eigenvalueg are the values of the observable
fi = f(¢;) at these points.

If the system is in the stat®, what are the probabilities of measuring the eigenvalues
f;? The answer is strikingly simple: measure the geodesic distance givenfrioyn the
point ¥ to the pointg; (denote it byd (W, ¢;)). The probability of measuring; is then,

P, (W) = coS[d(V, ¢,)]. (3.7)

Therefore, a stat& is more likely to ‘collapse’ to a nearby state than to a distant one when a
measurement is performed. For a geometric approach to the ‘reduction of the state vector’
see [19]. We will now turn our attention to spin systems and in particular the quantum
theory of a spinj particle.

3.2. The spin} system

In this part we will find the quantum theory of a sp%nparticle starting from the classical
description of section 2. We will then discuss the quantum theory in the geometric language
just described.

3.2.1. Geometric quantization of spin systemk section 2, we arrived at a kinematical
description for systems with ‘rotational degrees of freedom’, that includes spin systems. We
saw that the physically relevant spaceR3 that is foliated by spheres of radid& That

is, for each value of we have a sphere which corresponds to the reduced phase space of
a particle with classical ‘intrinsic angular momentum’ equalSto Since each sphere is a
simplectic manifold with a perfectly defined simplectic structure on it, we can employ the
machinery of geometric quantization that was outlined in the introduction.

We then havel’ = $2, Q,, = S sindV[,$V;0, where we have chosen spherical
coordinateq#, ¢) for the sphere. Note that the simplectic two-form jsS1times the area
element of a sphere of radids

The first step in geometric quantization is to construct the prequantum line bundle. There
are, however, some integrality conditions that must be satisfied so that the prequantum line
bundle exists. These conditions are the generalizations of the Bohr—Sommerfeld quantum
conditions:

1
2rh S2

wherek is an integer. Sincé¢, 2 = 47 S, the condition read$§ = %k This is precisely the
guantization of spin! What this condition tells us is that the only simplectic manifolds that

Q=k (3.8)
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can be quantized are those that correspond to classical systems whose angular momentum
is an integer multiple of;.

The next step is to find a polarization in the phase spachlote that the sphers? is
a compact manifold and therefore does not correspond to a cotangent bundle. Luckily the
sphere is a complex manifold and therefore admitsahl&r structure. We can coordinatize
it by z (recall that the Riemann sphere is the complex plane with the point at infinity). The
simplectic two form then reads,

dz A dz
(1+2z2)%

The Hilbert space of states will correspond then to holomorphic sections of a complex
line bundle over the sphere. A standard theorem in complex analysis shows that the space of

such sections ifinite-dimensional. Furthermore, holomorphic sections can be represented
as functions on the coordinateas follows,

k
W)=Y <ll‘> Yiz! (3.10)

=0
wherey; are constants. In this way, one gets all the finite-dimensional, unitary, irreducible
representations aSU (2).
Since we are interested in the spﬁnFepresentation, we have to consider the= 1
case, that is, the ‘smallest’ quantizable sphere. The Hilbert space in this case is given by
elements of the form,

W = o+ Yz .11

Each element of the Hilbert spack, will then be characterized by two complex numbers.
We have recovered the standafti (2) two-component spinors. The inner product is then,

(®1W) = 3(dovyo + Prv0). (3.12)
For details see [2].

Q= ikk (3.9)

3.2.2. Geometry of a quantum spénsystem. The spin degrees of freedom of a s;%in-
particle provide a very clear example of the geometric structures described in section 2.1.
In this case the Hilbert spacéf{, is formed by vectors orC? : (%) wherea and g are
complex numbers. As we saw above, it is convenient then to consides a real vector
space. Instead of a column vector@? we will have column vectors oR*:

a

b
W= . (3.13)

e
wherea, b, ¢, e are real numbers.
The Hermitian inner product¥|®) betweenw = (g) and® = () given by
(U|®) =ay + B (3.14)
induces a metri&G and a simplectic two-fornf2 on R*:
Gij =[ViaVia + V;bV;b + VicV;c + V;eV;e]
Q;j = 2(VaVjib + VicVje).
Normalized states then satisfy,
(®|®) =a?+b*> +c?+e2=1. (3.16)

(3.15)
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Thus, the spacé corresponds to the three-sphese
We know that the quantum space of stafeswill be the projection ofS® under the
action of theU (1) action. That is,S has the structure of a principal fibre bundle with fibre
S and base spac® = 52
st — s8
”l (3.17)
52,
This corresponds precisely to one of the Hopf bundles over the two-spfere

In order to show the projection explicitly and to recover common coordinates on the
sphereS? we introduce the coordinatés, 8, §) on S° as follows,

a= cos(i) cog§ + )

b= cos(i) sin( + «)

5 (3.18)
c=sin <2> coSs — «)
e =sin <ﬂ> sin(é — ).
2
It is straightforward to compute the induced simplectic structureS:on

It is clear that the degenerate directionsdfis (%)1, which is precisely the direction of the
‘phase change’ generated by
The induced metric off is

Gij = Vi(@)V;(@) + 3V, (B)V;(B) + Vi(§)V;(8) — 2€0SBV i (@) V) (). (3.20)

It is clear thatQ corresponds to the pullback 6 underm (2 = 7*€2). We can find the
metric defined in the orbits of the degenerate direction, and de&§in@) on P = S? with
ordinary spherical coordinaté€s8 = g8, ¢ = 2«) to be

Qup = 5 SINOV[, V0 (3.21)
8ab = 31SIP(O)Va(9) Vi (9) + Va(0) Vi (0)]. (3.22)

Quantum observables correspond’grio Hermitian 2x 2 matrices. A basis for those
matrices is given by the Pauli matrices. They are associated with the generators of rotations
in three dimensions and are the ‘angular momentum’ oper;ﬁtgrﬁy and S., satisfying
ordinary commutation relationsS], S;] = ifie;j; S;. We know that there are three functions
on P which correspond to the ‘observables’ in the ‘quantum phase space’;

N _ ho.
x = (8,) =Ri(ac + be) = 7 siné cos

y = (8,) = h(ae — cb) = - sinf sin¢ (3.23)

NS

2:=(8,) = %[(az +b%) — (P + )] = %cose.

It is a curious fact that they are also the Cartesian coordinates of a sphere ofirélius —
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Let us now consider dynamical evolution. Without a loss of generality we can take the
Hamiltonian to beH = AS,. The corresponding observable ghis h = (H) = A’l COsh.
Givenh andQ we can compute the equations of motion for the coordingte$):

6 =Q%,00,h =0

. _ 3.24
é = Q%8,¢0,h = —Ah. (3:24)

That is, the quantum evolution is given by a ‘point’ travelling §hat constant ‘latitude’
6 and with constant angular velocity = — A#.

Note that the quantum description in terms ofatder geometry’ for the spié-
particle coincides exactly with the classical description given in section 2. for the chosen
Hamiltonian. The spheres in both cases have, however, very different origins. In one case
it is the smallest quantizableduced phase spacén the quantum case it is th@ojective
‘quantum phase space’ coming from the Hilbert space of states. For an alternative treatment
of the spin% with complex coordinates see [18].

4. Non-standard quantum Hamiltonian systems

Notice that our previous discussion means that it is possible to describe the quantization of a
system in two stages. In order to see this, it is simpler to think of these stages in reverse, that
is, as one method of constructing a classical theory from a known quantum theory. In this
‘classicalization’ one would begin with a Hilbert spa@é, and a set of observables given as
linear operators oft{. We could now project onto the space of r@&swhich, since it is a

phase space itself and observables are now represented by real-valued functions, the system
is represented by a ‘classical theory’ with at least a large part (if not all) of the content
of the quantum theory defined on the Hilbert space. The main addition to this ‘classical’
theory is the probability structure given by (3.7) based on the Riemannian agtritf one

were able to ignore the probability structure of this simplectic manifold, one could think of
guantum mechanics oR as nothing more than another classical theory. Our programme
of ‘classicalization’ would then simply be a map frofh to another simplectic manifold

", the phase space of the usual classical theory. This mapping is in general ‘many-to-one’
since the spac® is much larger thaf". If it is only a small subset of°, the coherent

states that will behave in a ‘semiclassical’ fashion. We can represent the process by the
following diagram,

H

| 4.1)
P — T.

The usual process of ‘quantization’ is to leap fréhdirectly to 7, but one might just
try to reverse the direction of the arrows in (4.1), first constructing thihl&r quantum
theory’ onP, then ‘raising’ the observables dnto Hermitian operators of(. Notice that
it could be possible to stop this procedurePaif one could be certain thatll the properties
of quantum mechanics (such as the superposition of states) could be realized in terms of
observables ofP and the probability structure generated §y.

The programme we are addressing in this paper involves, however, the ordinary
guantization process froni to H and then considering the ‘projected’ geometrical
formulation onP. The classical theory we are starting with, having a modified simplectic
geometry defined on it, will yield a different geometryBn That is, the simplectic structure
Q on P will have some information of the corresponding onelanThe question we are
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led to ask is: Is the ‘non-standard’ geometry induced on the constructed quantum theory
compatible with experiment?

From now on we will restrict our attention to the simplest system at hand: the%spin-
particle, and show explicitly that there are obstructions to this procedure at each level. Given
that the various Hamiltonian descriptions for the classical system differ by only a conformal
transformation, the set of issues we will be addressing are the ones we called ‘dynamical’
in the discussion at the beginning of section 3. We shall encounter two difficulties in the
programme. First, while we will see that it is quite simple to mirror the change of simplectic
structure given by (2.15) and recover the dynamics of the quantum systefh (onthe
sense of recovering the integral curves of the original system), but we will find that it
is more difficult to maintain the probability structure in terms gf that does not exist
in the purely classical system. Secondly, we will see that realizing the dynamics of the
non-standard Hamiltonian system in terms of a linear Hamiltonian operator is impossible in
most cases.

We would like to change the simplectic two-form @hfor the spin-; system and find
a new Hamiltonian function’, which gives the same set of integral curves that are given
in section 3. We must also require that tbleysical predictions are the same in terms of
measurement. Recall that the probability of measuring the eigenwaloé an operator
O when the system is in staté is given by the geodesic distance frointo the point
D, ((5<I>,~ = 0;®;): P(¥,0;) = coS[d(¥, ®;)]. This implies that in order to recover the
same physical predictions, not only the dynamical trajectory must be the same but also the
geodesic distance to the eigenstates.

Let us consider a double Stern—-Gerlach experiment in which we first me&suared
then look only at the particles that had a spin ‘up’. In our picture, this corresponds to
considering a quantum state located at the ‘north pale=(0). We now make a second
measurement with a new measuring device. The spatial orientation of the new apparatus
corresponds precisely to the orientation of the eigenstates (which lie on ‘antipodal points’) on
the sphere. The probability of measuring spin ‘up’ and ‘down’ will depend only on the angle
along maximal circles, from the north pole to the ‘podes’. Since the system is rotationally
symmetric, we can rotate both detectors while keeping their relative orientation fixed and
the probabilities will not change. That operation corresponds to ‘fixing the ‘up’ direction of
the detectors’ in(x, y, z) space and rotating the sphere. Since the distance along the sphere
must be the same, we conclude that the metri§®should be rotational symmetric, which
is a property of the metric inherited from the Hermitian inner product. Let us denote by

2., the metric defined by equation (3.28),,= 1[SIN%(0) V. (#) Vs (#) + Va(0)V,(O)]).

We can conclude then that the metgishould be equal té, together with the integral
curves. The question that we are led to ask is: can we find asaemd h such that the
Hamiltonian vector fields of andg,, are the same? Since any two-form §fiis given

by a conformal transformation from the ‘canonical’ two-fofthdefined by equation (3.21),
what we are looking for is precisely the conformal factoin section 2, such that,

Qb = uQet. 4.2)

It is easy to see that we can findiasuch that the dynamical evolution is the same. The
condition, in the(9, ¢) coordinates, is

(—gﬁ) = (—g% Qg¢> (SZZ) 43)
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This set implies thaﬂJ: =0, or,h = f(0), so the system reduces to one equation:
AR = QP f/ (4.4)
where f' = ¢.
Therefore Q¢ = AE%. To solve the system, we could fix and then defing2 from

the previous equation. This would give us the conformal factqr as —hASn?

However, recall tha® must have a Ehler structure, sg and 2 must be compatible
in the sense thag,, = J Q. Can we chang& arbitrarily and still have a compatible
system for fixedg? The answer to this question is, as expected, in the negative. This is
because in order to have &HKler structure, the functiogi’ has to bef’ = K sin6. That
is, if and only if x = C, whereK andC are real and constant.

We have to conclude that for the sp%nsystem it is impossible to have a non-standard
guantum Hamiltonian dynamics compatible with observation: there is no freedom to change
Q andh.

The second obstruction when changing the simplectic structure in quantum mechanics
is that we would normally like to have the &aler quantum mechanics’ dd come from a
system of operators in a Hilbert space whose expectation valuéswauld generate the
observables. If we attempt to do this far and even if we were to ignore the negative
result above, we are still restricted by the fact thanhust be a function of onlg. Even if
we try to letz be any function o, in this simple case ifi is to be the image of a linear

Hermitian operator on the space of vectorsHnthe operatord must be of the form

~

H=¢I+58+5%585,+38. (4.5)
with ¢, n, «, A real. This means that
P+ 10+ 568+ 28y
BRI A IR A
R ho. _ h
=+ nZ siné cosg + KZ siné sing + AZ cost (4.6)

must be a function of. The only way to satisfy this for atp is to taken = « = 0. This
means that the only possiblethat come from linear Hermitian operators are

h=Kh+D (4.7)
where K and D are real constants. In this case the news © = (1/K)uo. All other

choices ofu must lead toH, a nonlinear operator.

These two obstructions are very strongly related, since the only way to have well-defined
vector fields on a Khler manifold is if they respect the complex structure (holomorphic
vector fields), and in turn, those vector fields correspond to Hamiltonian vector fields coming
from linear operators oft{ [17].

5. Conclusions and suggestions for further research

We have attempted to transfer to quantum theory an idea originally due to Hojman, that
perhaps the usual simplectic structure of classical mechanics is too restrictive, and it might
be possible to generalize it. In classical mechanics this is certainly the case, and it may
lead to new approaches to solving old problems, and can be used to construct Hamiltonian
theories for systems that have no variational principle, and thus no Hamiltonian in the usual
sense. We have considered this idea from the viewpoint of changing the simplectic structure
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and Hamiltonian of a system that does have a Hamiltonian. Classically this can be done
without a loss of generality, since we can easily generate the same solution curves for the
system for a large class of simplectic structures.

In the present article, we have investigated the simplest possible quantum system in
order to try to isolate sources of problems in quantizing non-standard Hamiltonian systems.
It is perhaps not surprising that we were able to achieve the same evolution of the quantum
states orP for any of our changes of Hamiltonian and Poisson structure, since this evolution
is nothing more than ‘classical’ Hamiltonian motion. The extra rigidity of a probability
structure was what caused our programme to fail for the simplelzc,pys{em. This provides
us with at least a hint that the basic problem in all systems will be in the probability structure
given by the Riemannian metric. This, too, is not surprising, since changing the Poisson
structure is related to changing the uncertainty relations for different observables of the
theory. These are in turn related to the ‘probabilities’ of finding the system in certain states.
We cannot be certain that the spﬁrsystem has all of the properties of higher-dimensional
systems, but it seems reasonable, from the discussion above, that we will always be able to
reproduce that evolution of the quantum states, but will encounter difficulties with probability
structures.

Our spin% system is also special in the sense that the spaaedI” are both spheres.

This is so becausevery state onP is a coherent state, and therefore exhibits an almost
classical behaviour [20]. For systems of higher dimensions than the%spﬂticle, either

we will have enough freedom to make changes in the simplectic structure without spoiling
the probability structure neccesary for quantum mechanics, or the programme will fail as it
did for our simple system. Given the manner in which the programme failed for thézspin—
particle, we conjecture that a similar failure will occur in more complicated systems. If this
is true we will have to use more general constructions thahl& spaces to describe the
guantum system.

In our simple example, changir@,, on P leads to a disastrous change in the metric
gap» ON P that defines the probability. If it were possible to chaglg without changing
ga»» We would have a simple solution to the problem. The difficulty here is equation (1.10),

8ab = Qacjbc (51)

which relates2,;, to g,, through the complex structure tensgf. Note that the complex
structure is required to be compatible wig,, and obeyJ’Jf = —§¢. If we make a
similarity transformation (such as a coordinate transformationy/py = S¢J¢(S~H¢,
JfJb” = —4; is preserved. If one makes such a transformation, bpghandg,, change as
‘covariant tensors’, which is perfectly acceptable. Notice that if we were to make a more
complicated transformation, such as a conformal transformatiorQgn Q., — ¢,
and at the same time insist thaf, remain unchanged in order to preserve the probability
structure, we would have to allowf — (1/¢)Jf, and JPJS = —(1/9)?8¢, which is
negative definite and non-singular as longpais finite and non-zero, but does not obey the
defining equation of a complex structure tensor.

In higher-dimensional phase spaces the Hojman transform&jgn— K:., would
imply that to maintain the metrig,, invariant one would have to také! — J,° =
JC“(K‘l)g, and, in principle, since the Hojman transformation contains the conformal factor
®, we might expect that;“J/” would not be equal to-3§¢, just as for a conformal
transformation. In that case, it would be necessary to postulate ‘pseudocomplex structures’,
where J{J? would be negative definite multiples éf but not necessarily-§¢, in order
to preserveg,, on changing®2,,. Note, however, that while the Hojman transformation
for a two-dimensional phase space reduces to a pure conformal transformation, the more
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general transformation allowed in higher-dimensional phase spaces may still allow us to
write J/*J/* = —§4, in which case//* is nothing more than a ‘deformed complex structure’,

and this concept has been studied for some time [21]. It is necessary to investigate whether
the Hojman transformation allows,”J/* = —s¢ or not. Another possibility would be

the investigation of complex manifolds that admit more than one simplectic structure, the
hyperkahler manifolds

Another construction that would permit changing the simplectic structure without
deforming the complex structure would be to allow the appropriate transformatigy; tmat
would preserve/ (in the spin% case a conformal transformation) and define probabilities
in some ‘conformally invariant’ fashion. We will not attempt to consider this idea further
here.

One remark is in order. The phase space of the system we started with, namely
the spheres?, is somewhat special. Perhaps the most notorious property is that it is a
compactmanifold. As a consequence, the Hilbert space in the quantum thedirjites
dimensional. Furthermore, it has recently been shown thabtie classical observables
that can be quantized in a way that the prescripfion— ia[,] is satisfied exactly, are
the generators of rotations [22]. This is the equivalent, fos?, of the Groenewold—

Van Hove theorem[23]. Our result for the sp%nsystem is therefore another indication

of the ‘rigidity’ of the structures one can define on the sphere. This has to be contrasted
with higher-dimensional (non-compact) phase spaces for which the quantum theory is much
richer (infinite-dimensional Hilbert space). In this case one has in fact an infinite number

of possible complex structures (this freedom is similar to the one that leads to different

inequivalent representations of the CCR in QFT). In this case, the non-standard quantum
theory has to satisfy the ‘kinematical’ requirements related to the Heisenberg uncertainty
principle, and possible super-selected sectors, in order to be considered ‘valid’. A complete
study of the most general case is therefore, still open.

Finally, note that if it were possible to be sure that all of the content of quantum
mechanics could be achieved in terms of the evolution and structure of poifs \ive
would not need to worry about the fact that the time evolution of states, for example, is a
reflection of evolution in the Hilbert spacg, that is generated by a nonlinear Hamiltonian
operator. If this is not so, then we would be forced to consider the possibility of nonlinear
evolution in quantum mechanics, an idea that has been proposed by several authors [18, 24],
but one should be justifiably reluctant to propose such a drastic modification to, at the very
least, a one-particle model.

Our investigation of the spié-system has given us a glimpse of possible obstructions
to doing quantum mechanics based on non-standard Hamiltonian dynamics. While our low-
dimensional example may not have enough freedom to allow different simplectic structures,
we feel that the type of failure observed there will be a feature of higher-dimensional
systems. This, of course, must be studied. If the feature is a general feature, more
complicated constructions must be considered. All of these problems will be considered in
future articles[25].
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